1000 resultados para drug compounding
Resumo:
AIM: To assess whether repeating a grade was associated with drug use among adolescents after controlling for personal, family and school-related variables, and whether there were differences between students in mandatory and post-mandatory school. METHODS: Data were drawn from the Catalonia Adolescent Health Survey, a cross-sectional study of in-school adolescents aged 14-19 y. The index group included 366 subjects who were repeating a grade at the time the survey was carried out (old-for-grade, OFG). A control group matched by gender, school and being one grade ahead was randomly chosen among all the subjects who had never repeated a grade. All statistically significant variables in the bivariate analysis were included in a multivariate analysis. In a second step, all analyses were repeated for students in mandatory (14-16 y) and post-mandatory (17-19 y) school. RESULTS: After controlling for background variables, subjects in the index group were more likely to perceive that most of their peers were using synthetic drugs and to have ever used them, to have bad grades and a worse relationship with their teachers. OFG students in mandatory school were more likely to have divorced parents, bad grades and have ever used synthetic drugs, whereas they were less likely to be regular drinkers. OFG students in post-mandatory school were more likely to have below average grades, to be regular smokers and to perceive that most of their peers used synthetic drugs. CONCLUSIONS: When background variables are taken into consideration, the relationship between repeating a grade and drug use is not so clear. By increasing the familial and academic support of adolescents with academic underachievement, we could reduce their drug consumption.
Resumo:
The development of orally active small molecule inhibitors of the epidermal growth factor receptor (EGFR) has led to new treatment options for non-small cell lung cancer (NSCLC). Patients with activating mutations of the EGFR gene show sensitivity to, and clinical benefit from, treatment with EGFR tyrosine kinase inhibitors (EGFR-TKls). First generation reversible ATP-competitive EGFR-TKls, gefitinib and erlotinib, are effective as first, second-line or maintenance therapy. Despite initial benefit, most patients develop resistance within a year, 50-60% of cases being related to the appearance of a T790M gatekeeper mutation. Newer, irreversible EGFR-TKls - afatinib and dacomitinib - covalently bind to and inhibit multiple receptors in the ErbB family (EGFR, HER2 and HER4). These agents have been mainly evaluated for first-line treatment but also in the setting of acquired resistance to first-generation EGFR-TKls. Afatinib is the first ErbB family blocker approved for patients with NSCLC with activating EGFR mutations; dacomitinib is in late stage clinical development. Mutant-selective EGFR inhibitors (AZD9291, CO-1686, HM61713) that specifically target the T790M resistance mutation are in early development. The EGFR-TKIs differ in their spectrum of target kinases, reversibility of binding to EGFR receptor, pharmacokinetics and potential for drug-drug interactions, as discussed in this review. For the clinician, these differences are relevant in the setting of polymedicated patients with NSCLC, as well as from the perspective of innovative anticancer drug combination strategies.
Resumo:
Concerns have been raised that universal availability of antiretroviral agents in resource-limited settings might lead to the emergence and spread of resistant strains. We present the largest survey on human immunodeficiency virus type 1 (HIV-1) resistance among treatment-naïve and experienced patients followed in small, relatively underprivileged cities in Brazil with universal availability to standard of care antiretroviral combinations. Samples were collected between 2004 and 2006 from 95 patients followed in the cities of Saquarema and Santo Antonio de Pádua, state of Rio de Janeiro. A proviral fragment encompassing protease and reverse transcriptase (RT) regions was generated and drug susceptibility level was inferred. Among 50 strains from drug-naïve subjects, one (2%) had intermediate-level resistance to RT inhibitors. Among 38 patients on therapy as of sampling, 28 (73.7%) had plasma viral load (PVL) below detection limit (26 of whom without evidence of resistance mutations) and 11 (28.9%) harbored strains with reduced susceptibility. Only two strains harbored both protease and RT inhibitor mutations. Among seven patients who were off-treatment as of sampling, two (28.5%) harbored strains with reduced susceptibility to RT inhibitors. The relatively high frequency of undetectable PVL among patients on treatment and the overall low prevalence of resistance-associated mutations are reassuring. Continued surveillance, however, is necessary.
Resumo:
Induction of drug-metabolizing enzymes (DMEs) is highly species-specific and can lead to drug-drug interaction and toxicities. In this series of studies we tested the species specificity of the antidiabetic drug development candidate and mixed peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949, EMD) with regard to the induction of gene expression and activities of DMEs, their regulators, and typical PPAR target genes. EMD clearly induced PPARalpha target genes in rats in vivo and in rat hepatocytes but lacked significant induction of DMEs, except for cytochrome P450 (P450) 4A. CYP2C and CYP3A were consistently induced in livers of EMD-treated monkeys. Interestingly, classic rodent peroxisomal proliferation markers were induced in monkeys after 17 weeks but not after a 4-week treatment, a fact also observed in human hepatocytes after 72 h but not 24 h of EMD treatment. In human hepatocyte cultures, EMD showed similar gene expression profiles and induction of P450 activities as in monkeys, indicating that the monkey is predictive for human P450 induction by EMD. In addition, EMD induced a similar gene expression pattern as the PPARalpha agonist fenofibrate in primary rat and human hepatocyte cultures. In conclusion, these data showed an excellent correlation of in vivo data on DME gene expression and activity levels with results generated in hepatocyte monolayer cultures, enabling a solid estimation of human P450 induction. This study also clearly highlighted major differences between primates and rodents in the regulation of major inducible P450s, with evidence of CYP3A and CYP2C inducibility by PPARalpha agonists in monkeys and humans.
Resumo:
An in-house, low-cost method was developed to determine the genotypic resistance of immunodeficiency virus type 1 (HIV-1) isolates. All 179 Venezuelan isolates analysed belonged to subtype B. Primary drug resistance mutations were found in 11% of 63 treatment-naïve patients. The prevalence of resistance in isolates from 116 HIV-positive patients under antiretroviral treatment was 47% to protease inhibitors, 65% to nucleoside inhibitors and 38% to non-nucleoside inhibitors, respectively. Around 50% of patients in the study harboured viruses with highly reduced susceptibility to the three classical types of drugs after only five years from their initial diagnoses.
Resumo:
The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR)as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNalpha treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner,inducing phosphorylation of the protein synthesis translation initiation factor eIF-2alpha and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNalpha combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug.
Resumo:
Intravenous drug injection has been reported as the main risk factor for hepatitis C virus (HCV) infection. The aim of the present study was to describe the prevalence and the epidemiological profile of HCV infection among abusers of illegal injected and non-injected drugs in Cuiabá, state of Mato Grosso, Central Brazil. A cross-sectional study including 314 male drug users from eight detoxification centres was performed. Out of 314 subjects studied, 48 (15.2%) were intravenous drug users. Participants were interviewed and had blood samples taken and tested for the presence of anti-HCV antibodies. Positive samples were tested for the presence of HCV RNA. Genotyping was performed on HCV RNA-positive samples. The overall prevalence of anti-HCV antibodies was 6.4% (n = 20). Out of 20 anti-HCV antibody-positive subjects, 16 (80%) were also HCV RNA-positive. Genotype 1 predominated (75%), followed by 3a (25%). Subtype 1a was more common than 1b. HCV infection was more prevalent among intravenous drug users (33%) than non-injecting users (1.5%). Logistic regression analyses showed independent associations between HCV infection and intravenous drug use, imprisonment and increasing age. In the present study, injecting drug use was the factor most strongly associated to HCV infection and inhaling or sniffing did not represent an increased susceptibility to infection.
Resumo:
Objective: Status epilepticus (SE) prognosis, is mostly related to non-modifiable factors (especially age, etiology), but the specific role of treatment appropriateness (TA) has not been investigated. Methods: In a prospective cohort with incident SE (excluding postanoxic), TA was defined, after recent European recommendations, in terms of drug dosage (630% deviation) and sequence. Outcome at hospital discharge was categorized into mortality, new handicap, or return to baseline. Results: Among 225 adults, treatment was inappropriate in 37%. In univariate analyses, age, etiology, SE severity and comorbidity, but not TA, were significantly related to outcome. Etiology (95% CI 4.3-82.8) and SE severity (95% CI 1.2-2.4) were independent predictors of mortality, and of lack of return to baseline conditions (etiology: 95% CI 3.9-14.0; SE severity: 95% CI 1.4-2.2). Moreover, TA did not improve outcome prediction in the corresponding ROC curves. Conclusions: This large analysis suggests that TA plays a negligible prognostic role in SE, probably reflecting the outstanding importance of the biological background. Awaiting treatment trials in SE, it appears questionable to apply further resources in refining treatment protocols involving existing compounds; rather, new therapeutic approaches should be identified and tested.
Resumo:
The current drug options for the treatment of chronic Chagas disease have not been sufficient and high hopes have been placed on the use of genomic data from the human parasite Trypanosoma cruzi to identify new drug targets and develop appropriate treatments for both acute and chronic Chagas disease. However, the lack of a complete assembly of the genomic sequence and the presence of many predicted proteins with unknown or unsure functions has hampered our complete view of the parasite's metabolic pathways. Moreover, pinpointing new drug targets has proven to be more complex than anticipated and has revealed large holes in our understanding of metabolic pathways and their integrated regulation, not only for this parasite, but for many other similar pathogens. Using an in silicocomparative study on pathway annotation and searching for analogous and specific enzymes, we have been able to predict a considerable number of additional enzymatic functions in T. cruzi. Here we focus on the energetic pathways, such as glycolysis, the pentose phosphate shunt, the Krebs cycle and lipid metabolism. We point out many enzymes that are analogous to those of the human host, which could be potential new therapeutic targets.
Resumo:
One major goal of research on Chagas disease is the development of effective chemotherapy to eliminate the infection from individuals who have not yet developed cardiac and/or digestive disease manifestations. Cure evaluation is the more complex aspect of its treatment, often leading to diverse and controversial results. The absence of reliable methods or a diagnostic gold standard to assess etiologic treatment efficacy still constitutes a major challenge. In an effort to develop more sensitive tools, polymerase chain reaction (PCR)-based assays were introduced to detect low amounts of Trypanosoma cruzi DNA in blood samples from chagasic patients, thus improving the diagnosis and follow-up evaluation after chemotherapy. In this article, I review the main problems concerning drug efficacy and criteria used for cure estimation in treated chagasic patients, and the work conducted by different groups on developing PCR methodologies to monitor treatment outcome of congenital infections as well as recent and late chronic T. cruzi infections.
Resumo:
This article presents an overview of the currently available drugs nifurtimox (NFX) and benznidazole (BZN) used against Trypanosoma cruzi, the aetiological agent of Chagas disease; herein we discuss their limitations along with potential alternatives with a focus on ergosterol biosynthesis inhibitors (EBI). These compounds are currently the most advanced candidates for new anti-T. cruzi agents given that they block de novo production of 24-alkyl-sterols, which are essential for parasite survival and cannot be replaced by a host's own cholesterol. Among these compounds, new triazole derivatives that inhibit the parasite's C14± sterol demethylase are the most promising, as they have been shown to have curative activity in murine models of acute and chronic Chagas disease and are active against NFX and BZN-resistant T. cruzi strains; among this class of compounds, posaconazole (Schering-Plough Research Institute) and ravuconazole (Eisai Company) are poised for clinical trials in Chagas disease patients in the short term. Other T. cruzi-specific EBI, with in vitro and in vivo potency, include squalene synthase, lanosterol synthase and squalene epoxidase-inhibitors as well as compounds with dual mechanisms of action (ergosterol biosynthesis inhibition and free radical generation), but they are less advanced in their development process. The main putative advantages of EBI over currently available therapies include their higher potency and selectivity in both acute and chronic infections, activity against NFX and BZN-resistant T. cruzi strains, and much better tolerability and safety profiles. Limitations may include complexity and cost of manufacture of the new compounds. As for any new drug, such compounds will require extensive clinical testing before being introduced for clinical use, and the complexity of such studies, particularly in chronic patients, will be compounded by the current limitations in the verification of true parasitological cures for T. cruzi infections.
Resumo:
Chagas disease, a neglected illness, affects nearly 12-14 million people in endemic areas of Latin America. Although the occurrence of acute cases sharply has declined due to Southern Cone Initiative efforts to control vector transmission, there still remain serious challenges, including the maintenance of sustainable public policies for Chagas disease control and the urgent need for better drugs to treat chagasic patients. Since the introduction of benznidazole and nifurtimox approximately 40 years ago, many natural and synthetic compounds have been assayed against Trypanosoma cruzi, yet only a few compounds have advanced to clinical trials. This reflects, at least in part, the lack of consensus regarding appropriate in vitro and in vivo screening protocols as well as the lack of biomarkers for treating parasitaemia. The development of more effective drugs requires (i) the identification and validation of parasite targets, (ii) compounds to be screened against the targets or the whole parasite and (iii) a panel of minimum standardised procedures to advance leading compounds to clinical trials. This third aim was the topic of the workshop entitled Experimental Models in Drug Screening and Development for Chagas Disease, held in Rio de Janeiro, Brazil, on the 25th and 26th of November 2008 by the Fiocruz Program for Research and Technological Development on Chagas Disease and Drugs for Neglected Diseases Initiative. During the meeting, the minimum steps, requirements and decision gates for the determination of the efficacy of novel drugs for T. cruzi control were evaluated by interdisciplinary experts and an in vitro and in vivo flowchart was designed to serve as a general and standardised protocol for screening potential drugs for the treatment of Chagas disease.