979 resultados para dipole
Resumo:
As an important branch of electrical prospecting method, the artificial source frequency domain electromagnetism method has received more and more attention. But when conducts the fundamental research, people often isolated study some concrete method, so the research results of one method are very difficult to apply to another method directly. This article will possess the artificial source frequency domain EM method to an 1D model simply. It is stratified medium model, with an electric or magnetic source in or outside of it. Then take the horizontal electric dipole source as an example to introduce how to computing the EM field in stratified medium. Because layer matrix is the key of establishing equations, so we call it the layer-matrix method. The key of layer-matrix method is establishing equations by using layer matrixes in wavenumber(kx, ky, z) domain, then obtains the electromagnetic field value of wavenumber domain. After Fourier transform, we can get electromagnetic field of any position in spatial domain. The layer matrix technique theoretically can calculate electromagnetic field of any position for any source, is suitable for many kinds of electromagnetic method. After introduction of the layer matrix method, this article has done some CSAMT, MCSEM and Wireless Electro-Magnetic Method (WEM) modeling with layer matrix method separately. In CSAMT modeling, we get electromagnetic field dissemination characteristics considering wave number of the air, and obtain three-dimensional distribution characteristics of the electromagnetic field. In MCSEM modeling, we get electromagnetic field dissemination characteristics with and without considering the airwave, and obtain three-dimensional distribution characteristics of electromagnetic field. In WEM modeling, we get electromagnetic field’s difference between considering the ionosphere and not considering it, and recognize the ionosphere’s influence of electromagnetic field. With the layer matrix technique, we have got some new understandings of EM dissemination rules of different situations. All analysis results indicate that the layer-matrix technique is credible and effective, and are worthy of further thorough research and development.
Resumo:
A frequency domain electromagnetic (conductivity) method for near surface soundings at low frequencies is discussed in this thesis. Its elementary principle is to detect the conductivity of the earth by the secondary magnetic fields induced by a current dipole on the earth. According to the EM induction theory, a coil with alternating current on the earth will generate a magnetic field in whole space which is referred to as the primary field Hp. The primary field would induce secondary currents in the earth which go down to depth like a batch of smoking rings. These currents further produce secondary magnetic field Hs .The primary and secondary magnetic fields are collected together by a receiver coil. Generally speaking,the secondary magnetic field is a complicated function of coil spacing, transmitting frequency and earth conductivity. But at low induction numbers, the secondary field is deduced to as a simple function of frequency, spacing and conductivity. Especially the ratio of secondary to primary field shares a linear proportion to the apparent conductivity. The earth conductivity can be interpreted by proper inversions with the apparent conductivity. The method is discussed at three steps: (1)Derivation of primary and secondary magnetic fields arising from vertical and horizontal magnetic dipoles on the earth based on the basic EM induction theory. (2)Field techniques and equipment developed for the method. (3)An interpretation technique was introduced using a cumulative and relative response function. Finally a test example is presented for examining the effectiveness of the method.
Resumo:
Two problems are studied in this thesis, the relationship of the magneto-spheric - ionospheric current systems during storms, and the effects of the main field to the space environment. The thesis includes three parts. 1. Magnetic disturbances caused by magnetospheric - ionospheric current systems Transient variations of the geomagnetic field at middle-low latitudes are mainly caused by the ionospheric dynamo current (IDC), the symmetric ring current (SRC), the partial ring current-region II field-aligned current-ionospheric current system (PRFI), and the region I field-aligned current-ionospheric current system (FACI). The storm on May 1 ~ 6, 1998 is analyzed. Firstly, the S_q-field caused by IDC current is removed by using the modified Hibberd's method in which the effect of SRC is considered. The neglect of SRC-field can give as much as 40% error in S_q-field evaluation. Secondly, the disturbance fields at the middle and low latitudes are separated according to their origins. As a result, the disturbance caused by FACI-current is an important part of the asymmetrical depression of H-component in middle and low latitudes during storms. The results show that the relative intensity of the Sq-field increases in the main phase of the storm and decreases in the recovery phase. The latitudinal gradient of the Sq-field is positive during the whole storm. The storm of May 1 ~ 6, 1998 contains two events. In the first event on May 2, the SRC-field is similar to Dst index. But in the second event on May 4 ~ 5, the SRC-field delays to Dst index, and the SRC-field depresses while the PRFI- and FACI-fields recovery. 2. Analysis of S_q~p variation in CGM coordinates In order to study the conjugation of geomagnetic variations between northern and southern hemispheres, we use the corrected geomagnetic coordinates (CGM) instead of the geomagnetic coordinates (GM) to analyze the S_q~P equivalent current system. The CGM coordinates are built up by International Geomagnetic Reference Field (IGRF) model. The S_q~p variations and equivalent current systems in the northern and southern polar regions are more symmetrical in CGM coordinates than in GM co-ordinates. This fact implies that the current distributions in polar regions are governed by the configuration of the geomagnetic field lines. As the elaborate structure of S_q~p current system in quiet time is obtained, we summarize the seasonal variation of the electrojet in quiet time. 3. The magnetospheric configuration of non-parallel-dipole model The magnetospheric configurations are calculated for two possible geomag-netic field models during the geomagnetic field reversals. These models are the dipole field with the axis to the sun and the quadrupole field model. We use the finite element method to solve the magnetic equation, and use the surface evolution method to solve the equilibrium equation. The results show that the main field greatly affects the space environment.
Resumo:
In this paper, we studied the secular variations of the main geomagnetic field during 1900-2000 in details. Emphasis is put on three aspects of the secular variations, i.e. westward drifts and intensity variations of non-dipole part, the decay of the dipole field. Firstly, we introduced the method of correlation analysis of moving random pattern into Geomagnetism in order to overcome the weakness of available methods on westward drift studies. We had committed testing and modifying the method, and analyzed the westward drifts and intensity variations of the non-dipole parts of geomagnetic field and 6 planetary-scale geomagnetic anomalies by this way. The globe and area characters of the westward drifts and intensity variations were discussed in detail. Second, the lat-dependence and dispersion of drift velocities were examined carefully. The results showed the velocities of the different wavelengths (from m = 1 to m = 10) geomagnetic potential were changing with the latitude. The lat-dependence of drift velocities is related to the latitude distributing of the geomagnetic potential. There was a negative dispersion in the westward drift, namely, the components of long wavelength drift faster than that of short wavelengths. Finally, we calculated the moments of the geomagnetic dipole, and found that the intensity of the dipole fields has been decreasing. Linking to the results in paleomagnetism, we draw a conclusion that the geomagnetic polarities may be reversed in 700 years.
Resumo:
The photodissociation of C6H5Br at 266 nm has been investigated on the universal crossed molecular beam machine, and time-of-flight spectra as well as the angular distribution of Br atom have been measured. Photofragment translational energy distribution P(E-t) reveals that about 47% of the available energy is partitioned into translational energy. The anisotropy parameter beta at this wavelength is -0.7+/-0.2. From P(E-t) and beta, we deduce that C6H5Br photodissociation is a fast process and the transition dipole moment is almost perpendicular to the C-Br bond. Ab initio calculations have been performed, and the calculated results show that the geometry of the first excited state of bromobenzene has changed apparently compared with that of the ground state. Two kinds of possible fast dissociation mechanism have also been proposed. (C) 1999 American Institute of Physics. [S0021-9606(99)01206-4].
Resumo:
The IR spectrum of 4-methyl-3-penten-2-one is interpreted with the aid of normal coordinate calculations within the Onsager self-consistent reaction field (SCRF) model, using a density functional theory (DFT) method at the Becke3LYP/6-31G* level. The solvent effects on the geometry, energy, dipole moment, and vibrational frequencies of 4-methyl-3-penten-2-one in the solution and in the liquid phase are calculated using the Onsager SCRF model. The calculated vibrational frequencies in the liquid-phase are in good agreement with the experimental values. The solvent reaction field has generally weak influence. For the two main bands of C=C and C=O mixed vibrational modes, small frequency shifts (5-6 cm(-1)), but relatively large changes in IR intensities (up to 101 km mol(-1) in the liquid phase) are found. (C) 1999 Elsevier Science BV. All rights reserved.
Resumo:
Behavioral inhibition model suggests the generation of anxiety is related with over-inhibition. For knowing about anxiety better, we used event-related potential (ERP) technique to explore the underlying mechanism of executive inhibition under the emotional distracter in high and low trait-anxious groups. Firstly, we set up the Chinese affective picture system (CAPS) as the stimuli of subsequent experiments. Secondly, we screened the high and low trait-anxious participants using the State-Trait Anxiety Inventory. In the first ERP study, a modified oddball paradigm was used with the positive, neutral and negative pictures as novel stimuli and the potentials evoked by three types pictures were analyzed. In the second ERP study, the same paradigm with higher task load was employed to examine the interaction of anxious level and emotion. Main results as follows: 1. CAPS consisted of 852 pictures was assessed via three dimensionalities, valence, arousal and dominance. The standard deviation of scores on valence and dominance was more than the standard deviation of scores on dimension of arousal. Scatter plot showed that the score distributing on the dimension of valence and arousal was wide in CAPS. 2. In both high and low trait-anxiety groups, the amplitudes of N2 and P3 of negative pictures were greater and smaller respectively as compared with neutral and positive pictures, which suggested all participants no matter what anxious level required more inhibition processing to negative information than others. 3. With increasing of task load, the P3 amplitudes of negative pictures in high anxious group were reduced relative to neutral pictures. In addition, in high anxious group, the P3 amplitudes of positive pictures had the same changes as those of negative ones. Whereas, the reduced P3 of positive pictures were not observed in low anxious group. The results showed the high anxious participants employed the same inhibitory strategy to the positive distracter as the negative distracter, which possibly the over-inhibition processing was involved in this group. 4. Dipole source analysis found cingulate may be involved in executive inhibition processing. In sum, as for the inhibition, high and low anxious group both is sensitive to negative information. However, in the high load situation, due to the shortness of cognitive resources, the high anxious individual represents the general sensitivity to all emotional information. These results gave the electrophysiological evidence for over-inhibition in high trait-anxiety group.
Resumo:
Previous researches has shown that two components of the event- related brain potential, the feedback negativity (FRN) and P300, are related to outcome evaluation. So far, the nature of the outcome evaluation reflected by FRN and the significance of P300 remains unknown. Some studies found that the process of outcome evaluation may be related to the expectation, and the FRN may be affected by the intensity levels of the expectation for the outcome. To address these issues, the present study will start on two aspects: (1)This study required 39 participants to make attribution about their performance during a task, the aim was to assess the levels of the expectations for the outcome under four conditions in the attribution task. The main finding is that, the expectations for monetary reward under four conditions are scaled. (2)Based on the results of the first study, this study also required 16 participants to make attribution about their performance during a task. A functional dissociation was observed, with the FRN affected by the intensity levels of the expectation for the outcome, while the P300 sensitive to the degree of emotion the participants experienced. Dipole source location analysis showed that the most likely neural generator of FRN and P300 is the cingulate cortex, suggesting that FRN might reflect cognitive conflict when the actual outcome is different from the expectation, and P300 is related to the emotion processing of outcome stimuli. These results suggest that there is a functional dissociation between FRN and P300.
Resumo:
Copper phthalocyanine on InSb(111)A?interface bonding, growth mode and energy band alignment, D.A. Evans, H.J. Steiner, S. Evans, R. Middleton, T.S. Jones, S. Park, T.U. Kampen, D.R.T. Zahn, G. Cabailh and I.T. McGovern, J. Phys.: Condens. Matter, 15, S2729?S2740, (2003)
Resumo:
We propose that a simple, closed-form mathematical expression--the Wedge-Dipole mapping--provides a concise approximation to the full-field, two-dimensional topographic structure of macaque V1, V2, and V3. A single map function, which we term a map complex, acts as a simultaneous descriptor of all three areas. Quantitative estimation of the Wedge-Dipole parameters is provided via 2DG data of central-field V1 topography and a publicly available data set of full-field macaque V1 and V2 topography. Good quantitative agreement is obtained between the data and the model presented here. The increasing importance of fMRI-based brain imaging motivates the development of more sophisticated two-dimensional models of cortical visuotopy, in contrast to the one-dimensional approximations that have been in common use. One reason is that topography has traditionally supplied an important aspect of "ground truth", or validation, for brain imaging, suggesting that further development of high-resolution fMRI will be facilitated by this data analysis. In addition, several important insights into the nature of cortical topography follows from this work. The presence of anisotropy in cortical magnification factor is shown to follow mathematically from the shared boundary conditions at the V1-V2 and V2-V3 borders, and therefore may not causally follow from the existence of columnar systems in these areas, as is widely assumed. An application of the Wedge-Dipole model to localizing aspects of visual processing to specific cortical areas--extending previous work in correlating V1 cortical magnification factor to retinal anatomy or visual psychophysics data--is briefly discussed.
Resumo:
This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.
Resumo:
In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.
Resumo:
Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future (opto-)electronic devices. Understanding the role played by the nature of the linking group and the chain length on the adsorption structures and electronic properties of these assemblies is vital to advance this technology. This Thesis is a study of such properties and contributes in particular to a microscopic understanding of induced changes in the work function of experimentally studied functionalized silicon surfaces. Using first-principles density functional theory (DFT), at the first step, we provide predictions for chemical trends in the work function of hydrogenated silicon (111) surfaces modified with various terminations. For nonpolar terminating atomic species such as F, Cl, Br, and I, the change in the work function is directly proportional to the amount of charge transferred from the surface, thus relating to the difference in electronegativity of the adsorbate and silicon atoms. The change is a monotonic function of coverage in this case, and the work function increases with increasing electronegativity. Polar species such as −TeH, −SeH, −SH, −OH, −NH2, −CH3, and −BH2 do not follow this trend due to the interaction of their dipole with the induced electric field at the surface. In this case, the magnitude and sign of the surface dipole moment need to be considered in addition to the bond dipole to generally describe the change in work function. Compared to hydrogenated surfaces, there is slight increase in the work function of H:Si(111)-XH, where X = Te, Se, and S, whereas reduction is observed for surfaces covered with −OH, −CH3, and −NH2. Next, we study the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si–(CH2)n–CH2 and H:Si–X–(CH2)n–CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)–Hexyl and (X)–Dodecyl functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0–3, n = 5–7, and n = 9–11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length. Later we continue by examining the work function tuning of H:Si(111) over a range of 1.73 eV through adsorption of alkyl monolayers with general formula -[Xhead-group]-(CnH2n)-[Xtail-group], X = O(H), S(H), NH(2). The work function is practically converged at 4 carbons (8 for oxygen), for head-group functionalization. For tail-group functionalization and with both head- and tail-groups, there is an odd-even effect in the behavior of the work function, with peak-to-peak amplitudes of up to 1.7 eV in the oscillations. This behavior is explained through the orientation of the terminal-group's dipole. The shift in the work function is largest for NH2-linked and smallest for SH-linked chains and is rationalized in terms of interface dipoles. Our study reveals that the choice of the head- and/or tail-groups effectively changes the impact of the alkyl chain length on the work function tuning using self-assembled monolayers and this is an important advance in utilizing hybrid functionalized Si surfaces. Bringing together the understanding gained from studying single type functionalization of H:Si(111) with different alkyl chains and bearing in mind how to utilize head-group, tail-group or both as well as monolayer coverage, in the final part of this Thesis we study functionalized H:Si(111) with binary SAMs. Aiming at enhancing work function adjustment together with SAM stability and coverage we choose a range of terminations and linker-chains denoted as –X–(Alkyl) with X = CH3, O(H), S(H), NH(2) and investigate the stability and work function of various binary components grafted onto H:Si(111) surface. Using binary functionalization with -[NH(2)/O(H)/S(H)]-[Hexyl/Dodecyl] we show that work function can be tuned within the interval of 3.65-4.94 eV and furthermore, enhance the SAM’s stability. Although direct Si-C grafted SAMs are less favourable compared to their counterparts with O, N or S linkage, regardless of the ratio, binary functionalized alkyl monolayers with X-alkyl (X = NH, O) is always more stable than single type alkyl functionalization with the same coverage. Our results indicate that it is possible to go beyond the optimum coverage of pure alkyl functionalized SAMs (50%) by adding a linker with the correct choice of the linker. This is very important since dense packed monolayers have fewer defects and deliver higher efficiency. Our results indicate that binary anchoring can modify the charge injection and therefore bond stability while preserving the interface electronic structure.
Resumo:
The description of the monolayer formed at Au(1 1 1) by 2-mercaptobenzimidazole (MBI) under potential control has been based on electrochemical data (charge measurements) and spectroscopic information from the subtractively normalized interfacial Fourier transform infrared spectroscopy method (SNIFTIRS). From the quantitative analysis of the SNIFTIR spectra, a surface coverage Γ/Γmax was extracted for each sample potential. The evolution of the coverage with potential was in full agreement with the charge density curve. The shift of the pzc in the presence of MBI indicates that the adsorbed molecules have a nonzero component of the permanent dipole moment in the direction perpendicular to the electrode surface. Thanks to the high quality of the spectra, it was possible to determine the orientation of MBI molecules at the surface in the monolayer and submonolayer range. The angle between the C2-axis of the molecule and the direction normal to the surface is close to 64 ± 4° and its small change (<15°) with potential indicates that the orientation of the molecules is chiefly controlled by the chemical interaction between the sulphur atom and the gold surface. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio. © 2011 American Physical Society.