964 resultados para dimethyl ether synthesis
Resumo:
Insight into the unique structure of layered double hydroxides has been obtained using a combination of X-ray diffraction and thermal analysis. Indium containing hydrotalcites of formula Mg4In2(CO3)(OH)12•4H2O (2:1 In-LDH) through to Mg8In2(CO3)(OH)18•4H2O (4:1 In-LDH) with variation in the Mg:In ratio have been successfully synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium containing layered double hydroxide. Distinct mass loss steps attributed to dehydration, dehydroxylation and decarbonation are observed for the indium containing hydrotalcite. Dehydration occurs over the temperature range ambient to 205 °C. Dehydroxylation takes place in a series of steps over the 238 to 277 °C temperature range. Decarbonation occurs between 763 and 795 °C. The dehydroxylation and decarbonation steps depend upon the Mg:In ratio. The formation of indium containing hydrotalcites and their thermal activation provides a method for the synthesis of indium oxide based catalysts.
Resumo:
This research has established, through ultrasound, near infrared spectroscopy and biomechanics experiments, parameters and parametric relationships that can form the framework for quantifying the integrity of the articular cartilage-on-bone laminate, and objectively distinguish between normal/healthy and abnormal/degenerated joint tissue, with a focus on articular cartilage. This has been achieved by: 1. using traditional experimental methods to produce new parameters for cartilage assessment; 2. using novel methodologies to develop new parameters; and 3. investigating the interrelationships between mechanical, structural and molec- ular properties to identify and select those parameters and methodologies that can be used in a future arthroscopic probe based on points 1 and 2. By combining the molecular, micro- and macro-structural characteristics of the tissue with its mechanical properties, we arrive at a set of critical benchmarking parameters for viable and early-stage non-viable cartilage. The interrelationships between these characteristics, examined using a multivariate analysis based on principal components analysis, multiple linear regression and general linear modeling, could then to deter- mine those parameters and relationships which have the potential to be developed into a future clinical device. Specifically, this research has found that the ultrasound and near infrared techniques can subsume the mechanical parameters and combine to characterise the tissue at the molecular, structural and mechanical levels over the full depth of the cartilage matrix. It is the opinion in this thesis that by enabling the determination of the precise area of in uence of a focal defect or disease in the joint, demarcating the boundaries of articular cartilage with dierent levels of degeneration around a focal defect, better surgical decisions that will advance the processes of joint management and treatment will be achieved. Providing the basis for a surgical tool, this research will contribute to the enhancement and quanti�cation of arthroscopic procedures, extending to post- treatment monitoring and as a research tool, will enable a robust method for evaluating developing (particularly focalised) treatments.
Resumo:
Controlled syntheses of carbon nanotubes (CNTs) are highly desirable for nanoelectronic applications. To date, metallic catalyst particles have usually been deemed unavoidable for the nucleation and growth of any kind of CNTs. However, the presence of metal species mixed with the CNTs represents a shortcoming for most electronic applications, as metal particles are incompatible with silicon semiconductor technology. Recently it has been shown that it is possible to create nanotubes without the presence of metallic catalysts, by using SIO2, Ge and other non-metallic nanoparticles. Here we report on a metal-catalyst-free synthesis of CNTs, obtained through Ge nano-particles assembled on silicon surfaces previously patterned by Focused Ion Beam and nanoindentation.
Resumo:
Nitrous oxide (N2O) is primarily produced by the microbially-mediated nitrification and denitrification processes in soils. It is influenced by a suite of climate (i.e. temperature and rainfall) and soil (physical and chemical) variables, interacting soil and plant nitrogen (N) transformations (either competing or supplying substrates) as well as land management practices. It is not surprising that N2O emissions are highly variable both spatially and temporally. Computer simulation models, which can integrate all of these variables, are required for the complex task of providing quantitative determinations of N2O emissions. Numerous simulation models have been developed to predict N2O production. Each model has its own philosophy in constructing simulation components as well as performance strengths. The models range from those that attempt to comprehensively simulate all soil processes to more empirical approaches requiring minimal input data. These N2O simulation models can be classified into three categories: laboratory, field and regional/global levels. Process-based field-scale N2O simulation models, which simulate whole agroecosystems and can be used to develop N2O mitigation measures, are the most widely used. The current challenge is how to scale up the relatively more robust field-scale model to catchment, regional and national scales. This paper reviews the development history, main construction components, strengths, limitations and applications of N2O emissions models, which have been published in the literature. The three scale levels are considered and the current knowledge gaps and challenges in modelling N2O emissions from soils are discussed.
Resumo:
Long-term loss of soil C stocks under conventional tillage and accrual of soil C following adoption of no-tillage have been well documented. No-tillage use is spreading, but it is common to occasionally till within a no-till regime or to regularly alternate between till and no-till practices within a rotation of different crops. Short-term studies indicate that substantial amounts of C can be lost from the soil immediately following a tillage event, but there are few field studies that have investigated the impact of infrequent tillage on soil C stocks. How much of the C sequestered under no-tillage is likely to be lost if the soil is tilled? What are the longer-term impacts of continued infrequent no-tillage? If producers are to be compensated for sequestering C in soil following adoption of conservation tillage practices, the impacts of infrequent tillage need to be quantified. A few studies have examined the short-term impacts of tillage on soil C and several have investigated the impacts of adoption of continuous no-tillage. We present: (1) results from a modeling study carried out to address these questions more broadly than the published literature allows, (2) a review of the literature examining the short-term impacts of tillage on soil C, (3) a review of published studies on the physical impacts of tillage and (4) a synthesis of these components to assess how infrequent tillage impacts soil C stocks and how changes in tillage frequency could impact soil C stocks and C sequestration. Results indicate that soil C declines significantly following even one tillage event (1-11 % of soil C lost). Longer-term losses increase as frequency of tillage increases. Model analyses indicate that cultivating and ripping are less disruptive than moldboard plowing, and soil C for those treatments average just 6% less than continuous NT compared to 27% less for CT. Most (80%) of the soil C gains of NT can be realized with NT coupled with biannual cultivating or ripping. (C) 2007 Elsevier B.V. All rights reserved.