963 resultados para decomposition bags


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase instability of bismuth perovskite (BiMO3), where M is a ferromagnetic cation, is exploited to create self-assembled magnetic oxide nanocrystal arrays on oxide supports. Conditions during pulsed laser deposition are tuned so as to induce complete breakdown of the perovskite precursor into bismuth oxide (Bi2 O3 ) and metal oxide (M-Ox ) pockets. Subsequent cooling in vacuum volatizes the Bi2 O3 leaving behind an array of monodisperse nanocrystals. In situ reflective high energy electron diffraction beam is exploited to monitor the synthesis in real-time. Analysis of the patterns confi rms the phase separation and volatization process. Successful synthesis of M-Ox, where M = Mn, Fe, Co, and Cr, is shown using this template-free facile approach. Detailed magnetic characterization of nanocrystals is carried out to reveal the functionalities such as magnetic anisotropy as well as larger than bulk moments, as expected in these oxide nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the preparation of silica-supported nickel oxide from nickel nitrate impregnation and drying, the replacement of the traditional air calcination step by a thermal treatment in 1% NO/Ar prevents agglomeration, resulting in highly dispersed NiO. The mechanism by which NO prevents agglomeration was investigated by using combined in situ diffuse reflectance infrared fourier transform (DRIFT) spectroscopy and mass spectrometry (MS). After impregnation and drying, a supported nickel hydroxynitrate phase with composition Ni(3)(NO(3))(2)(OH)(4) had been formed. Comparison of the evolution of the decomposition gases during the thermal decomposition of Ni(3)(NO(3))(2)(OH)(4) in labeled and unlabeled NO and O(2) revealed that NO scavenges oxygen radicals, forming NO(2). The DRIFT spectra revealed that the surface speciation evolved differently in the presence of NO as compared with in O(2) or Ar. It is proposed that oxygen scavenging by NO depletes the Ni(3)(NO(3))(2)(OH)(4) phase of nitrate groups, creating nucleation sites for the formation of NiO, which leads to very small (similar to 4 nm) NiO particles and prevents agglomeration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XPS, TPD and HREEL results indicate that molecular pyrrole is a fragile adsorbate on clean Pd{111}. At 200 K and for low coverages, the molecule remains intact and adopts an almost flat-lying geometry. With increasing coverage, pyrrole molecules tilt away from the surface and undergo N-H bond cleavage to form strongly tilted pyrrolyl (C4H4N) species. In addition, a weakly bound, strongly tilted form of molecular pyrrole is observed at coverages approaching saturation. Heating pyrrole monolayers results in desorption of similar to 15% of the overlayer as molecular pyrrole and N-a+ C4H4Na recombination with formation of hat-lying pyrrole molecules. This strongly bound species undergoes decomposition to adsorbed CN, CHx and H, leading ultimately to desorption of HCN and H-2. The implications of these results for the production of pyrrole by a heterogeneously catalysed route are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosignal measurement and processing is increasingly being deployed in ambulatory situations particularly in connected health applications. Such an environment dramatically increases the likelihood of artifacts which can occlude features of interest and reduce the quality of information available in the signal. If multichannel recordings are available for a given signal source, then there are currently a considerable range of methods which can suppress or in some cases remove the distorting effect of such artifacts. There are, however, considerably fewer techniques available if only a single-channel measurement is available and yet single-channel measurements are important where minimal instrumentation complexity is required. This paper describes a novel artifact removal technique for use in such a context. The technique known as ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA) is capable of operating on single-channel measurements. The EEMD technique is first used to decompose the single-channel signal into a multidimensional signal. The CCA technique is then employed to isolate the artifact components from the underlying signal using second-order statistics. The new technique is tested against the currently available wavelet denoising and EEMD-ICA techniques using both electroencephalography and functional near-infrared spectroscopy data and is shown to produce significantly improved results. © 1964-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a novel algorithm for decomposing NFA automata into one-state-active modules for parallel execution on Multiprocessor Systems on Chip (MP-SoC). Furthermore, performance related studies based on a 16-PE system for Snort, Bro and Linux-L7 regular expressions are presented. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand Side Management (DSM) programmes are designed to shift electrical loads from peak times. Demand Response (DR) algorithms automate this process for controllable loads. DR can be implemented explicitly in terms of Peak to Average Ratio Reduction (PARR), in which case the maximum peak load is minimised over a prediction horizon by manipulating the amount of energy given to controllable loads at different times. A hierarchical predictive PARR algorithm is presented here based on Dantzig-Wolfe decomposition. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levoglucosan (1,6-anhydro-β-d-glucopyranose) decomposition is an important step during cellulose pyrolysis and for secondary tar reactions. The mechanism of levoglucosan thermal decomposition was studied in this paper using density functional theory methods. The decomposition included direct CO bond breaking, direct CC bond breaking, and dehydration. In total, 9 different pathways, including 16 elementary reactions, were studied, in which levoglucosan serves as a reactant. The properties of the reactants, transition states, intermediates, and products for every elementary reaction were obtained. It was found that 1-pentene-3,4-dione, acetaldehyde, 2,3-dihydroxypropanal, and propanedialdehyde can be formed from the CO bond breaking decomposition reactions. 1,2-Dihydroxyethene and hydroxyacetic acid vinyl ester can be formed from the CC bond breaking decomposition reactions. It was concluded that CO bond breaking is easier than CC bond breaking due to a lower activation energy and a higher released energy. During the 6 levoglucosan dehydration pathways, one water molecule which composed of a hydrogen atom from C3 and a hydroxyl group from C2 is the preferred pathway due to a lower activation energy and higher product stability. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic theoretical study on the adsorption of steam and its thermal decomposition products on carbon both zigzag and armchair surface was performed to provide molecular-level understanding of the reaction activity of all these reactants in biomass steam gasification process. All the calculations were carried out using density functional theory (DFT) at the B3LYP/6-31+g(d,p) level. The structures of carbonaceous surfaces, all reactants and surface complexes were optimized and characterized. Based on the value of adsorption heat been obtained from the calculation, the activity of all reactants can be ordered as: O > O2 >H2 >H >OH >H2O for both zigzag and armchair surface, and the adsorption style is physisorption to water molecule and chemisorption to the other dissociated components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystins (cyclic heptapeptides) produced by a number of freshwater cyanobacteria are a potential cause for concern in potable water supplies due to their acute and chronic toxicity. TiO2 photocatalysis is a promising technology for removal of these toxins from drinking water. It is, however, necessary to have a sufficient knowledge of how the catalyst materials cause the degradation of the toxins through the photocatalytic process. The present study reports microcystin degradation products of the photocatalytic oxidation by using a number of commercial TiO2 powder (P25, PC50, PC500 and UV100) and granular (KO1, KO3, TiCat-C, TiCat-S) materials, so aiding the mechanistic understanding of this process. Liquid chromatography-mass spectrometry analysis demonstrated that the major destruction pathway of microcystin for all the catalysts tested followed almost the same pathway, indicating the physical properties of the catalysts had little effects on the degradation pathway of microcystin-LR.