980 resultados para crystal growth
Resumo:
Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au + Au and p + p collisions at root s(NN) = 200 GeV. Strong short- and long-range correlations (LRC) are seen in central Au + Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short-range correlations are observed in peripheral Au + Au collisions. Both the dual parton model (DPM) and the color glass condensate (CGC) predict the existence of the long-range correlations. In the DPM, the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC, longitudinal color flux tubes generate the LRC. The data are in qualitative agreement with the predictions of the DPM and indicate the presence of multiple parton interactions.
Resumo:
The dynamics and mechanism of migration of a vacancy point defect in a two-dimensional (2D) colloidal crystal are studied using numerical simulations. We find that the migration of a vacancy is always realized by topology switching between its different configurations. From the temperature dependence of the topology switch frequencies, we obtain the activation energies for possible topology transitions associated with the vacancy diffusion in the 2D crystal. (C) 2011 American Institute of Physics. [doi:10.1063/1.3615287]
Resumo:
We report the microwave dielectric properties and photoluminescence of undoped and europium oxide doped Ta(2)O(5) fibers, grown by laser heated pedestal growth technique. The effects of Eu(2)O(3) doping (1-3 mol %) on the structural, optical, and dielectric properties were investigated. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for Eu(2)O(3) doped Ta(2)O(5) samples it increases, reaching up to 36 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. For this wide band gap oxide, Eu(3+) optical activation was achieved and the emission is observed up to room temperature. Thus, the transparency and high permittivity make this material promising for electronic devices and microwave applications. (c) 2008 American Institute of Physics.
Resumo:
We present an extensive study of the structural, magnetic, and thermodynamic properties of the two heterometallic oxyborates: Co(2)FeO(2)BO(3) and Ni(2)FeO(2)BO(3). This has been carried out through x-ray diffraction at room temperature (RT) and 150 K, dc and ac magnetic susceptibilities, and specific-heat experiments in single crystals above 2 K. The magnetic properties of these iron ludwigites are discussed in comparison with those of the other two known homometallic ludwigites: Fe(3)O(2)BO(3) and Co(3)O(2)BO(3). In both ludwigites now studied we have found that the magnetic ordering of the Fe(3+) ions occurs at temperatures very near to which they order in Fe(3)O(2)BO(3). A freezing of the divalent ions (Co and Ni) is observed at lower temperatures. Our x-ray diffraction study of both ludwigites at RT and 150 K showed very small ionic disorder in apparent contrast with the freezing of the divalent ion spins. The structural transition that occurs in homometallic Fe(3)O(2)BO(3) has not been found in the present mixed ludwigites in the temperature range investigated.
Resumo:
Time-resolved Z-scan measurements were performed in a Nd(3+)-doped Sr(0.61)Ba(0.39)Nb(2)O(6) laser crystal through ferroelectric phase transition. Both the differences in electronic polarizability (Delta alpha(p)) and cross section (Delta sigma) of the neodymium ions have been found to be strongly modified in the surroundings of the transition temperature. This observed unusual behavior is concluded to be caused by the remarkable influence that the structural changes associated to the ferro-to-paraelectric phase transition has on the 4f -> 5d transition probabilities. The maximum polarizability change value Delta alpha(p)=1.2x10(-25) cm(3) obtained at room temperature is the largest ever measured for a Nd(3+)-doped transparent material.
Resumo:
During a polymorphism screening of hydroxybenzophenone derivatives, a monohydrate pseudopolymorph of (3,4-dihydroxyphenyl)(phenyl)methanone, C(13)H(10)O(3)center dot H(2)O, (I), was obtained. Structural relationships and the role of water in crystal assembly were established on the basis of the known anhydrous form [Cox, Kechagias & Kelly (2008). Acta Cryst. B64, 206-216]. The crystal packing of (I) is stabilized by classical intermolecular O-H...O hydrogen bonds, generating a three-dimensional network.
Resumo:
In the present work we investigated the electrochemical behavior of PVA on polycrystalline Pt and single-crystal Pt electrodes. PVA hampered the characteristic hydrogen UPD and anion adsorption on all investigated surfaces, with the processes on Pt(110) being the most affected by the PVA presence. Several oxidation waves appeared as the potential was swept in the positive direction and the Pt(111) was found to be the most active for the oxidation processes. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3615965] All rights reserved.
Resumo:
Ethanol oxidation has been studied on Pt(111), Pt(100) and Pt(110) electrodes in order to investigate the effect of the surface structure and adsorbing anions using electrochemical and FTIR techniques. The results indicate that the surface structure and anion adsorption affect significantly the reactivity of the electrode. Thus, the main product of the oxidation of ethanol on the Pt(111) electrode is acetic acid, and acetaldehyde is formed as secondary product. Moreover, the amount of CO formed is very small, and probably associated with the defects present on the electrode surface. For that reason, the amount of CO(2) is also small. This electrode has the highest catalytic activity for the formation of acetic acid in perchloric acid. However, the formation of acetic acid is inhibited by the presence of specifically adsorbed anions, such as (bi) sulfate or acetate, which is the result of the formation of acetic acid. On the other hand, CO is readily formed at low potentials on the Pt(100) electrode, blocking completely the surface. Between 0.65 and 0.80 V, the CO layer is oxidized and the production of acetaldehyde and acetic acid is detected. The Pt(110) electrode displays the highest catalytic activity for the splitting of the C-C bond. Reactions giving rise to CO formation, from either ethanol or acetaldehyde, occur at high rate at any potential. On the other hand, the oxidation of acetaldehyde to acetic acid has probably the lower reaction rate of the three basal planes.
Resumo:
Due to the worldwide increase in demand for biofuels, the area cultivated with sugarcane is expected to increase. For environmental and economic reasons, an increasing proportion of the areas are being harvested without burning, leaving the residues on the soil surface. This periodical input of residues affects soil physical, chemical and biological properties, as well as plant growth and nutrition. Modeling can be a useful tool in the study of the complex interactions between the climate, residue quality, and the biological factors controlling plant growth and residue decomposition. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of aboveground phytomass and litter decomposition, and to validate the model through field experiment data. When studying aboveground growth, burned and unburned harvest systems were compared, as well as the effect of mineral fertilizer and organic residue applications. The simulations were performed with data from experiments with different durations, from 12 months to 60 years, in Goiana, TimbaA(0)ba and Pradpolis, Brazil; Harwood, Mackay and Tully, Australia; and Mount Edgecombe, South Africa. The differentiation of two pools in the litter, with different decomposition rates, was found to be a relevant factor in the simulations made. Originally, the model had a basically unlimited layer of mulch directly available for decomposition, 5,000 g m(-2). Through a parameter optimization process, the thickness of the mulch layer closer to the soil, more vulnerable to decomposition, was set as 110 g m(-2). By changing the layer of mulch at any given time available for decomposition, the sugarcane residues decomposition simulations where close to measured values (R (2) = 0.93), contributing to making the CENTURY model a tool for the study of sugarcane litter decomposition patterns. The CENTURY model accurately simulated aboveground carbon stalk values (R (2) = 0.76), considering burned and unburned harvest systems, plots with and without nitrogen fertilizer and organic amendment applications, in different climates and soil conditions.
Resumo:
Upland rice plants, cultivar `IAC 202,` were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo - Ni, AN - Mo + Ni, UR + Mo + Ni, UR + Mo - Ni, and UR - Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry-matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 --N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR-grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 --N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate-grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.
Resumo:
Biological nitrogen fixation (BNF) constitutes a valuable source of this nutrient for the common bean Phaseolus vulgaris L and cowpea Vigna unguiculata (L.) Walp., being its avaibility affected by mineral N in the soil solution. The objectives of this work were to evaluate the effects of nitrogen rate, as urea, on symbiotic fixation of N(2) in common bean and cowpea plants, using the isotopic technique, and quantifying the relative contributions of N sources symbiotic N(2) fixation, soil native nitrogen and urea N on the growth of the common bean and cowpea. Non nodulating soybean plants were used as standard. The research was carried out in greenhouse, using pots with 5 kg of soil from a Typic Haplustox (Dystrophic Red Yellow Latosol). The experimental design was completely randomized blocks, with 30 treatments and three replications, arranged in 5x3x2 factorial outline. The treatments consisted of five N rates: 2, 15, 30, 45 and 60 mg N kg(-1) soil; three sampling times: 23, 40 and 76 days after sowing (DAS) and two crops: common bean and cowpea. The BNF decreased with increase N rates, varying from 81.5% to 55.6% for cowpea, and from 71.9% to 55.1% for common bean. The symbiotic N(2) fixation in cowpea can substitute totally the nitrogen fertilization. The nitrogen absorption from soil is not affected by nitrogen fertilizer rate. The N recovery from fertilizer at 76 DAS was of 60.7% by common bean, and 57.1% by cowpea. The symbiotic association in common bean needs the application of a starting dose (40 kg N ha(-1)) for economically acceptable yields.
Resumo:
In this study we investigated the gene expression of proteins related to myostatin (MSTN) signaling during skeletal muscle longitudinal growth. To promote muscle growth, Wistar male rats were submitted to a stretching protocol for different durations (12, 24, 48, and 96 hours). Following this protocol, soleus weight and length and sarcomere number were determined. In addition, expression levels of the genes that encode MSTN, follistatin isoforms 288 and 315 (FLST288 and FLST315), follistatin-like 3 protein (FLST-L3), growth and differentiation factor-associated protein-1 (GASP-1), activin IIB receptor (ActIIB), and SMAD-7 were determined by real-time polymerase chain reaction. Prolonged stretching increased soleus weight, length, and sarcomere number. In addition, MSTN gene expression was increased at 12-24 hours, followed by a decrease at 96 hours when compared with baseline values. FLST isoforms, FLST-L3, and GASP-1 mRNA levels increased significantly over all time-points. ActIIB gene expression decreased quickly at 12-24 hours. SMAD-7 mRNA levels showed a late increase at 48 hours, which peaked at 96 hours. The gene expression pattern of inhibitory proteins related to MSTN signaling suggests a strong downregulation of this pathway in response to prolonged stretching. Muscle Nerve 40: 992-999, 2009
Resumo:
This study aimed to investigate the effects of physical training, and different levels of protein intake in the diet, on the growth and nutritional status of growing rats. Newly-weaned Wistar rats (n=48) were distributed into six experimental groups: three of them were subjected to physical swim training (1 h per day. 5 d per week, for 4 wk, after 2 wk of familiarization) and the other three were considered as controls (non-trained). Each pair of groups, trained and non-trained, received diets with a different level of protein in their composition: 14%. 21% or 28%. The animals were euthanized at the end of the training period and the following analyses were performed: proteoglycan synthesis as a biomarker of bone and cartilage growth, IGF-I (insulin-like growth factor-I) assay as a biomarker of growth and nutritional status. total RNA and protein concentration and protein synthesis measured in vivo using a large-dose phenylalanine method. As a main finding, increased dietary protein, combined with physical training, was able to improve neither tissue protein synthesis nor muscle growth. In addition, cartilage and bone growth seem to be deteriorated by the lower and the higher levels of protein intake. Our data allow us to conclude that protein enhancement in the diet, combined with physical exercise, does not stimulate tissue protein synthesis or muscle mass growth. Furthermore, physical training, combined with low protein intake, was not favorable to bone development in growing animals.
Resumo:
Nyvlt method Was used to determine the kinetic parameters of commercial xylitol in ethanol:water (50:50 %w/w) Solution by batch cooling crystallization. The kinetic exponents (n, g and in) and the system kinetic constant (B(N)) were determined. Model experiments were carried Out in order to verify the combined effects of saturation temperatures (40, 50 and 60 degrees C) and cooling rates (0.10, 0.25 and 0.50 degrees C/min) on these parameters. The fitting between experimental and Calculated crystal sizes has 11.30% mean deviation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Aims: The main objective of this study was to evaluate the behaviour of the brown-rot fungus Wolfiporia cocos under differential iron availability. Methods and Results: W. cocos was grown under three differential iron conditions. Growth, catecholate and hydroxamate production, and mycelial and extracellular Fe3+-reducing activities were determined. Iron starvation slowed fungal growth and accelerated pH decline. Some mycelial proteins of low molecular weight were repressed under iron restriction, whereas others of high molecular weight showed positive iron regulation. Mycelial ferrireductase activity decreased as culture aged, while Fe3+-reducing activity of low molecular reductants constantly increased. Hydroxamates production suffered only limited iron repression, whereas catecholates production showed to be more iron repressible. Conclusions: W. cocos seems to possess more than one type of iron acquisition mechanism; one involving secretion of organic acids and ferrireductases and/or extracellular reductants, and another relying on secretion of catecholates and hydroxamates chelators. Significance and Impact of the Study: This paper is the first to report the kinetic study of brown-rot fungus grown under differential iron availability, and the information provided here contributes to address more traditional problems in protecting wood from brown decay, and also makes a contribution in the general area of the physiology of brown-rot fungi.