911 resultados para continuous-wave (CW) lasers
Resumo:
In this paper, a highly efficient Ti:sapphire end-pumped 1 at.-% Nd:YAG ceramic laser that is comparable in efficiency with Nd:YAG single crystal lasers has been developed. Optical absorption and emission spectra for Nd:YAG ceramics have been measured. With 673-mW pumping, 295-mW laser output at 1064 nm has been obtained. The laser threshold is only 13 mW. Deducted the transmitted light, the corresponding optical-to-optical conversion efficiency is 58.4%. The lasing characteristics of Nd:YAG ceramic are nearly equal to those of Nd:YAG single crystal.
Resumo:
This is about the first reported laser glass with very low no, high Er3+ concentration and no quenching. In this work, a series of high Er3+ concentration (10.6-12.2 x 10(20) ions/cm(3)), low refractive index (n(1550) < 1.47) and relatively high fluorescence lifetime (6.8-12.6 ms) fluorophosphate glasses were made. A cw-pumping evanescent wave optical amplifier experiment was performed with it, and a relative gain of around 2dB at 1550 nm wavelength was achieved while the noise level was almost unchanged. To our knowledge, this is the first successful relative gain in evanescent wave optical amplifiers (EWOA) demonstrated with cw pumping. It is a valuable study of specially designed fluorophosphate glass suitable for EWOA communication experiment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A detailed study of the design issues relevant to long-wavelength monolithic mode-locked lasers is presented. Following a detailed review of the field, we have devised a validated travelling wave model to explore the limits of mode-locking in monolithic laser diodes, not only in terms of pulse duration and repetition rate, but also in terms of stability. It is shown that fast absorber recovery is crucial for short pulse width, that the ratio of gain to absorption saturation is key in accessing ultrashort pulses and that low alpha factors give only modest benefit. Finally, optimized contact layouts are shown to greatly enhance pulse stability and the overall operational success. The design rules show high levels of consistency with published experimental data.
Resumo:
The threshold current densities and voltage tensions (body voltages) between the head and tail for bringing about distinct reactions in Salmo irideus, Cyprinus Carpio, Tinea tinca, Gasterosteus aculeatus and Salmo fario were studied. In C. carpio and T. tinca, absolute current densities required decreased with increase in length of fish. Threshold current densities for different reactions of fish increased with rise in water temperature and conductivity of surrounding medium except in case of T. tinca where low current densities were sufficient in higher conductivity of water. Impulse D.C. was superior to continuous D.C. Better effect was noticed in fishes in lower current densities when their bodies were parallel to the lines of current conduction.
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.
Resumo:
Liquid crystal lasers offer wide, continuous tuneability across the visible and near-infrared (450-850 nm). Compared to conventional tuneable laser technology, liquid crystal lasers are highly compact and have simple and scalable manufacturability. Their ability to emit multiple simultaneous emissions of arbitrarily selectable wavelength also gives them functional advantages over competing technologies. This paper describes Förster transfer techniques that have enabled this extended continuously tunable emission range, whilst maintaining a common pump source. © 2012 OSA.
Resumo:
Smooth and continuous ZnO films consisting of densely packed ZnO nanorods (NRs), which can be used for electronic device fabrication, were synthesized using a hydro-thermo-chemical solution deposition method. Such devices would have the novelty of high performance, benefiting from the inherited unique properties of the nanomaterials, and can be fabricated on these smooth films using a conventional, low cost planar process. Photoluminescence measurements showed that the NR films have much stronger shallow donor to valence band emissions than those from discrete ZnO NRs, and hence have the potential for the development of ZnO light emission diodes and lasers, etc. The NR films have been used to fabricate large area surface acoustic wave devices by conventional photolithography. These demonstrated two well-defined resonant peaks and their potential for large area device applications. The chemical solution deposition method is simple, reproducible, scalable and economic. These NR films are suitable for large scale production on cost-effective substrates and are promising for various fields such as sensing systems, renewable energy and optoelectronic applications.
Resumo:
In this paper we describe the time-varying amplitude and its relation to the global heat release rate of self-excited azimuthal instabilities in a simple annular combustor operating under atmospheric conditions. The combustor was modular in construction consisting of either 12, 15 or 18 equally spaced premixed bluff-body flames around a fixed circumference, enabling the effect of large-scale interactions between adjacent flames to be investigated. High-speed OH* chemiluminescence imaged from above the annulus and pressure measurements obtained at multiple locations around the annulus revealed that the limit cycles of the modes are degenerate in so much as they undergo continuous transitions between standing and spinning modes in both clockwise (CW) and anti-clockwise (ACW) directions but with the same resonant frequency. Similar behaviour has been observed in LES simulations which suggests that degenerate modes may be a characteristic feature of self-excited azimuthal instabilities in annular combustion chambers. By modelling the instabilities as two acoustic waves of time-varying amplitude travelling in opposite directions we demonstrate that there is a statistical prevalence for either standing m=1 or spinning m=±1 modes depending on flame spacing, equivalence ratio, and swirl configuration. Phase-averaged OH* chemiluminescence revealed a possible mechanism that drives the direction of the spinning modes under limit-cycle conditions for configurations with uniform swirl. By dividing the annulus into inner and outer annular regions it was found that the spin direction coincided with changes in the spatial distribution of the peak heat release rate relative to the direction of the bulk swirl induced along the annular walls. For standing wave modes it is shown that the globally integrated fluctuations in heat release rate vary in magnitude along the acoustic mode shape with negligible contributions at the pressure nodes and maximum contributions at the pressure anti-nodes. © 2013.
Resumo:
We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © 2012 OSA.
Resumo:
FM mode-locking in monolithic semiconductor lasers is investigated for the first time, using a travelling-wave laser model. The effects of phase modulation depth and non-zero alpha factor on pulse quality and pulse-width are discussed. © 2004 Optical Society of America.
Resumo:
FM mode-locking in monolithic semiconductor lasers is investigated for the first time, using a travelling-wave laser model. The effects of phase modulation depth and non-zero alpha factor on pulse quality and pulse-width are discussed. © 2004 Optical Society of America.
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.