860 resultados para conceptual data modelling
Resumo:
Formal Concept Analysis allows to derive conceptual hierarchies from data tables. Formal Concept Analysis is applied in various domains, e.g., data analysis, information retrieval, and knowledge discovery in databases. In order to deal with increasing sizes of the data tables (and to allow more complex data structures than just binary attributes), conceputal scales habe been developed. They are considered as metadata which structure the data conceptually. But in large applications, the number of conceptual scales increases as well. Techniques are needed which support the navigation of the user also on this meta-level of conceptual scales. In this paper, we attack this problem by extending the set of scales by hierarchically ordered higher level scales and by introducing a visualization technique called nested scaling. We extend the two-level architecture of Formal Concept Analysis (the data table plus one level of conceptual scales) to many-level architecture with a cascading system of conceptual scales. The approach also allows to use representation techniques of Formal Concept Analysis for the visualization of thesauri and ontologies.
Resumo:
Knowledge discovery support environments include beside classical data analysis tools also data mining tools. For supporting both kinds of tools, a unified knowledge representation is needed. We show that concept lattices which are used as knowledge representation in Conceptual Information Systems can also be used for structuring the results of mining association rules. Vice versa, we use ideas of association rules for reducing the complexity of the visualization of Conceptual Information Systems.
Resumo:
Conceptual Information Systems unfold the conceptual structure of data stored in relational databases. In the design phase of the system, conceptual hierarchies have to be created which describe different aspects of the data. In this paper, we describe two principal ways of designing such conceptual hierarchies, data driven design and theory driven design and discuss advantages and drawbacks. The central part of the paper shows how Attribute Exploration, a knowledge acquisition tool developped by B. Ganter can be applied for narrowing the gap between both approaches.
Resumo:
Conceptual Information Systems provide a multi-dimensional conceptually structured view on data stored in relational databases. On restricting the expressiveness of the retrieval language, they allow the visualization of sets of realted queries in conceptual hierarchies, hence supporting the search of something one does not have a precise description, but only a vague idea of. Information Retrieval is considered as the process of finding specific objects (documents etc.) out of a large set of objects which fit to some description. In some data analysis and knowledge discovery applications, the dual task is of interest: The analyst needs to determine, for a subset of objects, a description for this subset. In this paper we discuss how Conceptual Information Systems can be extended to support also the second task.
Resumo:
Conceptual Graphs and Formal Concept Analysis have in common basic concerns: the focus on conceptual structures, the use of diagrams for supporting communication, the orientation by Peirce's Pragmatism, and the aim of representing and processing knowledge. These concerns open rich possibilities of interplay and integration. We discuss the philosophical foundations of both disciplines, and analyze their specific qualities. Based on this analysis, we discuss some possible approaches of interplay and integration.
8th International Conference on Conceptual Structures: logical, linguistic, and computational issues
Resumo:
CEM is an email management system which stores its email in a concept lattice rather than in the usual tree structure. By using such a conceptual multi-hierarchy, the system provides more flexibility in retrieving stored emails. The paper presents the underlying mathematical structures, discusses requirements for their maintenance and presents their implementation.
Resumo:
Conceptual Information Systems are based on a formalization of the concept of "concept" as it is discussed in traditional philosophical logic. This formalization supports a human-centered approach to the development of Information Systems. We discuss this approach by means of an implemented Conceptual Information System for supporting IT security management in companies and organizations.
Resumo:
In database marketing, the behavior of customers is analyzed by studying the transactions they have performed. In order to get a global picture of the behavior of a customer, his single transactions have to be composed together. In On-Line Analytical Processing, this operation is known as reverse pivoting. With the ongoing data analysis process, reverse pivoting has to be repeated several times, usually requiring an implementation in SQL. In this paper, we present a construction for conceptual scales for reverse pivoting in Conceptual Information Systems, and also discuss the visualization. The construction allows the reuse of previously created queries without reprogramming and offers a visualization of the results by line diagrams.
Resumo:
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Resumo:
Among many other knowledge representations formalisms, Ontologies and Formal Concept Analysis (FCA) aim at modeling ‘concepts’. We discuss how these two formalisms may complement another from an application point of view. In particular, we will see how FCA can be used to support Ontology Engineering, and how ontologies can be exploited in FCA applications. The interplay of FCA and ontologies is studied along the life cycle of an ontology: (i) FCA can support the building of the ontology as a learning technique. (ii) The established ontology can be analyzed and navigated by using techniques of FCA. (iii) Last but not least, the ontology may be used to improve an FCA application.
Resumo:
A modeling study of hippocampal pyramidal neurons is described. This study is based on simulations using HIPPO, a program which simulates the somatic electrical activity of these cells. HIPPO is based on a) descriptions of eleven non-linear conductances that have been either reported for this class of cell in the literature or postulated in the present study, and b) an approximation of the electrotonic structure of the cell that is derived in this thesis, based on data for the linear properties of these cells. HIPPO is used a) to integrate empirical data from a variety of sources on the electrical characteristics of this type of cell, b) to investigate the functional significance of the various elements that underly the electrical behavior, and c) to provide a tool for the electrophysiologist to supplement direct observation of these cells and provide a method of testing speculations regarding parameters that are not accessible.