893 resultados para computational materials science and simulation
Resumo:
The amateur birding community has a long and proud tradition of contributing to bird surveys and bird atlases. Coordinated activities such as Breeding Bird Atlases and the Christmas Bird Count are examples of "citizen science" projects. With the advent of technology, Web 2.0 sites such as eBird have been developed to facilitate online sharing of data and thus increase the potential for real-time monitoring. However, as recently articulated in an editorial in this journal and elsewhere, monitoring is best served when based on a priori hypotheses. Harnessing citizen scientists to collect data following a hypothetico-deductive approach carries challenges. Moreover, the use of citizen science in scientific and monitoring studies has raised issues of data accuracy and quality. These issues are compounded when data collection moves into the Web 2.0 world. An examination of the literature from social geography on the concept of "citizen sensors" and volunteered geographic information (VGI) yields thoughtful reflections on the challenges of data quality/data accuracy when applying information from citizen sensors to research and management questions. VGI has been harnessed in a number of contexts, including for environmental and ecological monitoring activities. Here, I argue that conceptualizing a monitoring project as an experiment following the scientific method can further contribute to the use of VGI. I show how principles of experimental design can be applied to monitoring projects to better control for data quality of VGI. This includes suggestions for how citizen sensors can be harnessed to address issues of experimental controls and how to design monitoring projects to increase randomization and replication of sampled data, hence increasing scientific reliability and statistical power.
Resumo:
Despite its relevance to a wide range of technological and fundamental areas, a quantitative understanding of protein surface clustering dynamics is often lacking. In inorganic crystal growth, surface clustering of adatoms is well described by diffusion-aggregation models. In such models, the statistical properties of the aggregate arrays often reveal the molecular scale aggregation processes. We investigate the potential of these theories to reveal hitherto hidden facets of protein clustering by carrying out concomitant observations of lysozyme adsorption onto mica surfaces, using atomic force microscopy. and Monte Carlo simulations of cluster nucleation and growth. We find that lysozyme clusters diffuse across the substrate at a rate that varies inversely with size. This result suggests which molecular scale mechanisms are responsible for the mobility of the proteins on the substrate. In addition the surface diffusion coefficient of the monomer can also be extracted from the comparison between experiments and simulations. While concentrating on a model system of lysozyme-on-mica, this 'proof of concept' study successfully demonstrates the potential of our approach to understand and influence more biomedically applicable protein-substrate couples.
Resumo:
The dehydriding and rehydriding of sodium aluminium hydride, NaAlR4, is kinetically enhanced and rendered reversible in the solid state upon doping with a small amount of catalyst species, such as titanium, zirconium or tin. The catalyst doped hydrides appear to be good candidates for development as hydrogen carriers for onboard proton exchange membrane (PEM) fuel cells because of their relatively low operation temperatures (120-150 degrees C) and high hydrogen carrying capacities (4-5 wt.%). However, the nature of the active catalyst species and the mechanism of catalytic action are not yet known. In particular, using combinations of Ti and Sri compounds as dopants, a cooperative catalyst effect of the metals Ti and Sn in enhancing the hydrogen uptake and release kinetics is hereby reported. In this paper, characterization techniques including XRD, XPS, TEM, EDS and SEM have been applied on this material. The results suggest that the solid state phase changes during the hydriding and dehydriding processes are assisted through the interaction of a surface catalyst. A mechanism is proposed to explain the catalytic effect of the Sn/Ti double dopants on this hydride.
Resumo:
The emergence of the mechanical bond during the past 25 years is giving chemistry a fillip in more ways than one. While its arrival on the scene is already impacting materials science and molecular nanotechnology, it is providing a new lease of life to chemical synthesis where mechanical bond formation Occurs as a consequence of the all-important templation Orchestrated by molecular recognition and self-assembly. The way in which covalent bond formation activates noncovalent bonding interactions, switching on molecular recognition that leads to self-assembly, and the template-directed synthesis of mechanically interlocked molecules-of which the so-called catenanes and rotaxanes may be regarded as the prototypes-has introduced a level of integration into chemical synthesis that has not previously been attained jointly at the supramolecular and molecular levels. The challenge now is to carry this I vel of integration during molecular synthesis beyond relatively small molecules into the realms of precisely functionalized extended molecular Structures and superstructures that perform functions in a collective manner as the key sources of instruction, activation, and performance in multi-component integrated Circuits and devices. These forays into organic chemistry by a scientific nomad are traced through thick and thin from the Athens of the North to the Windy City by Lake Michigan with interludes on the edge of the Canadian Shield beside Lake Ontario, in the Socialist Republic of South Yorkshire, on the Plains of Cheshire beside the Wirral, in the Midlands in the Heartland of Albion, and in the City of Angels beside the Peaceful Sea. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper summarizes the design, manufacturing, testing, and finite element analysis (FEA) of glass-fibre-reinforced polyester leaf springs for rail freight vehicles. FEA predictions of load-deflection curves under static loading are presented, together with comparisons with test results. Bending stress distribution at typical load conditions is plotted for the springs. The springs have been mounted on a real wagon and drop tests at tare and full load have been carried out on a purpose-built shaker rig. The transient response of the springs from tests and FEA is presented and discussed.