898 resultados para composite material
Resumo:
Light dynamics is a relevant phenomenon with respect to esthetic restorations, as incorrect analysis of the optical behavior of natural dentition may lead to potential clinical failures. The nature of incident light plays a major role in determining the amount of light transmission or reflection, and how an object is perceived depends on the nature of the light source. Natural teeth demonstrate translucency, opalescence, and fluorescence, all of which must be replicated by restorative materials in order to achieve clinical success. Translucency is the intermediary between complete opacity and complete transparency, making its analysis highly subjective. In nature, the translucency of dental enamel varies from tooth to tooth, and from individual to individual. Therefore, four important factors must be considered when appraising translucency. Presence or absence of color, thickness of the enamel, degree of translucency, and surface texture are essential components when determining translucency. State-of-the-art resin composites provide varying shades and opacities that deliver a more faithful reproduction of the chromaticity and translucency/opacity of enamel and dentin. This enables the attainment of individualized and customized composite restorations. The objective of this article is to provide a review of the phenomena of translucency and opacity in the natural dentition and composite resins, under the scope of optics, and to describe how to implement these concepts in the clinical setting.CLINICAL SIGNIFICANCEChoosing composite resins, based on optical properties alone, in order to mimic the properties of natural tooth structures, does not necessarily provide a satisfactory esthetic outcome. In many instances, failure ensues from incorrect analysis of the optical behaviors of the natural dentition as well as the improper use of restorative materials. Therefore, it is necessary to implement a technique that enables a restorative material to be utilized to its full potential to correctly replicate the natural teeth.(J Esthet Restor Dent 23:73-88, 2011).
Resumo:
Objective: This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Material and methods: Filtek (TM) Z350 nanofilled composite resins and Amelogen (R) Plus, Vit-l-escence (TM) and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free Light (TM) 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm(-1)) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). Results: The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey's test showed that the nanofilled resin (Filtek (TM) Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (Filtek (TM) Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free Light (TM) 2). Conclusions: The nanofilled resin showed the lowest DC, and the Vit-l-escence (TM) microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.
Resumo:
Foi avaliado o possível efeito de tratamentos superficiais em pinos de fibra de carbono lisos, quando comparados aos pinos serrilhados, na retenção à resina composta empregada na confecção de núcleos de preenchimento. Foram utilizados cinqüenta pinos de fibra de carbono, divididos em cinco grupos: os quatro primeiros grupos eram constituídos por pinos do tipo liso, cujas superfícies foram tratadas, e o último grupo por dez pinos do tipo serrilhado. Foram desenvolvidas matrizes de resina acrílica com um leito ajustado para conter o pino, com um alargamento na porção coronária para posterior preenchimento com resina composta. Após o tratamento superficial, todos os pinos receberam camadas de primer, foram secos e então ajustados à matriz de resina, colocando-se a resina composta autopolimerizável na porção coronária para um núcleo de preenchimento de 3 mm. As amostras foram submetidas a termociclagem e armazenadas em água destilada por uma semana. Os espécimes foram testados por meio de ensaios mecânicos de tração, à velocidade de 0,5 mm/min, até o deslocamento do conjunto ou a fratura da resina do núcleo. As conclusões foram as seguintes: a) o tratamento superficial nos grupos tratados por meio de jateamento (Grupo A), pontas diamantadas marcadoras de profundidade para facetas laminadas (Grupo C) e alteração da morfologia da extremidade coronária (Grupo D) conferiu aos pinos lisos valores de retenção comparáveis aos dos pinos serrilhados (Grupo E) nos ensaios de tração, porém sem diferença estatisticamente significativa entre estes grupos; b) os pinos tratados por meio de pontas diamantadas de granulação média (Grupo B) obtiveram valores de retenção menores que os demais grupos.
Resumo:
Objective: A restorative material for Class III cavities must, besides being functional, be esthetically satisfactory, providing good working conditions and several shade and color options. A clinical evaluation was initiated to compare the suitability of resin composite and glass-ionomer cement materials for such restorations.Method and materials: Forty-two Class III conservative cavities, esthetically important because of facial extensions, were selected. Resin composite restorations were placed in 21 cavities, and the remaining 21 were restored with glass-ionomer cement. The following characteristics were studied: color or-esthetics, anatomic shape, surface texture, staining, marginal infiltration, dental plaque retention, and occurrence of fracture. After 24 months, the restorations were evaluated.Results: the only statistically significant difference between the resin composite and glass-ionomer cement restorations in the experimental period involved color or esthetics.Conclusion: Resin composites and glass-ionomer materials provide excellent functional and esthetic results in Class III cavities when properly indicated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the Knoop hardness of one resin cement (dual-cure mode or light-cure mode) when illuminated directly or through restorative materials-ceramic (HeraCeram) or composite (Artglass)-by two light curing units. Light curing was carried out using a conventional quartz tungsten halogen (QTH) light source (XL2500) for 40 s, and a light emitting diodes (LED) light source (Ultrablue Is) for 40 s. Bovine incisors had their buccal faces flattened and hybridised. on these surfaces, a mould was seated and filled with cement. A disc of the veneering material (1.5 mm thickness) was positioned over this set for light curing. After storage (24 h/37 degrees C), samples (n = 10) were sectioned for hardness (KHN) measurements. Data were submitted to ANOVA and to Tukey's test (alpha = 0.05). In general, light curing with LED resulted in higher hardness values than QTH. Distinct cement behaviour was observed with different veneering material in association with different light curing units (LCUs). (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The present work was conducted at FCAV-UNESP, Campus de Jaboticabal, in late harvest crop time of 1991. One hundred interpopulational hybrids obtained from a top-cross between Dent Composite and Flint Composite populations were evaluated. The analyzed characteristics were: Spodoptera frugiperda damages, lodging, damaged ears percentage, and productivity. Estimates of heritability, variance between progenies and genetical gain for each character of available population were determined. Estimates of the progenies variance, like those from heritability for the different analysed characters, indicate that there is an adequate genetical variance for the utilization of that material on subsequent genetic breeding programs, though allowing genetical gains, on the following selection cycles for the characteristics: grain weight, lodging and damages caused by armyworm larvae, whereas for the other characteristics the obtained results were not satisfactory.
Resumo:
The preparation of the ZrO(2):8 mol % Y(2)O(3)/NiO (YSZ/NiO) composites by a modified liquid mixture technique is reported. Nanometric NiO particles dispersed over the yttria-stabilized zirconia (YSZ) were prepared, resulting in dense sintered specimens with no solid solution formation between the oxides. Such a feature allowed for the electrical characterization of the composites in a wide range of relative volume fraction, temperature, and oxygen partial pressure. The main results indicate that the composites have high electrical conductivity, and the transport properties in these mixed ionic-electronic (MIEC) composites are strongly dependent on the relative volume fraction of the phases, microstructure, and temperature. These parameters should hence be taken into consideration for the optimized design of MIEC composites for electrochemical applications. In this context, the composite was reduced under H(2) for the preparation of high-conductivity YSZ/Ni cermets for use as solid oxide fuel cell anode material with relatively low metal content. (c) 2005 the Electrochemical Society. [DOI:10.1149/1.2149312] All rights reserved.
Resumo:
The aim of this study was to evaluate the effect of ageing in distilled water on the hardness and compressive strength of a direct composite resin Z100, a feldspatic porcelain (Noritake) and three indirect composites (Artglass, Solidex and Targis). For the Vickers hardness tests, five disk-shaped specimens (2 x 4 mm) of each material were prepared according to the manufacturers' instructions. The hardness tests were conducted using a Vickers diamond indentor. Compressive strength measurements were recorded on cylindrical specimens with a diameter of 6 mm and a length of 12 mm. The compression tests were carried out with a constant cross-head speed of 0.5 mm min(-1) on a mechanical test machine. For each material, 10 specimens were tested after 7 days of dry storage at 37 +/- 1 degreesC and 10 specimens were tested after water storage at 37 +/- 1 degreesC for 180 days. Noritake porcelain specimens showed higher hardness values than the composites. Among the composite materials, Z100 promoted the highest VHN values, regardless of the ageing periods. The results showed that Solidex and Z100 had the highest compressive strength values. Ageing in water reduced the hardness for all composites, but had no long-term effect on the compressive strength.
Resumo:
Thermal decomposition kinetics of solid rocket propellants based on hydroxyl-terminated polybutadiene-HTPB binder was studied by applying the Arrhenius and Flynn-Wall-Ozawa's methods. The thermal decomposition data of the propellant samples were analyzed by thermogravimetric analysis (TG/DTG) at different heating rates in the temperature range of 300-1200 K. TG curves showed that the thermal degradation occurred in three main stages regardless of the plasticizer (DOA) raw material, the partial HTPB/IPDI binder and the total ammonium perchlorate decompositions. The kinetic parameters E-a (activation energy) and A (pre-exponential factor) and the compensation parameter (S-p) were determined. The apparent activation energies obtained from different methods showed a very good agreement.
Resumo:
Investigations of photo-induced structural transformations (PST) and related changes of optical parameters in the light-sensitive amorphous chalcogenides were extended to composite layers, which consist of a wide band-gap material and an active material, Se60Te40 with a smaller band gap. Photo-stimulated interdiffusion and/or crystallization in layered Se0.6Tc0.4/As0.6Se0.94 and Se0.6Te0.4/SiOx were investigated with respect to their dependence on the compositional modulation of the multilayer at scale-dimensions (similar to3-10nm). It was established that PST due to the interdiffusion and crystallization can be efficiently operated by the composition of the adjacent layers of the multilayer which results in the change of the transformation rate and of the optical relief type (positive or negative). The comparison with a single Se0.6Te0.4 layer and with the known data for amorphous-Se/As2S3 multilayers supports the advantages of composite layers for amplitude-phase optical recording. (C) 2004 Published by Elsevier B.V.
Resumo:
This study analyzed mineral trioxide aggregate (MTA) as a root canal filling material for the immediate reimplantation of monkey teeth. Four adult capuchin monkeys Cebus apella were used, which had their maxillary and mandibular lateral incisors on both sides extracted and reimplanted after 15 min. During the extra-alveolar period, the teeth were kept in saline solution and after reimplantation retention was performed with a stainless steel wire and composite resin for 14 days. After 7 days, the reimplanted teeth were submitted to endodontic treatment with biomechanics up to file n. 30 and irrigation with a saturated solution of calcium hydroxide [Ca(OH)(2)], and then divided into two study groups: group I - root canal filled with a Ca(OH)(2) paste, and group II - root canal filled with MTA. Radiographic follow up was performed at 30, 60 and 90 days postoperatively, and after 180 days the animals were killed and specimens were processed for histomorphological analysis. The results revealed that most specimens of both groups presented organized periodontal ligament with no inflammation. The resorptions observed were surface resorptions and were repaired by cementum. Both MTA and Ca(OH)(2) were good root canal filling materials for immediately reimplanted teeth, providing good repair and also allowing biological sealing of some lateral canals. There was no significant difference between the study groups (alpha = 29.60%).
Resumo:
This in vitro study evaluated the cytotoxic effects of a restorative resin composite applied to an immortalized odontoblast-cell line (MDPC-23). Seventy-two round resin discs (2-mm thick and 4 mm in diameter) were light-cured for 20 or 40 seconds and rinsed, or not, with PBS and culture medium. The resin discs were divided into four experimental groups: Group 1: Z-100/20 seconds; Group 2: Z-100/20 seconds/rinsed; Group 3: Z100/40 seconds; Group 4: Z-100/40 seconds/rinsed. Circular filter paper was used as a control material (Group 5). The round resin discs and filter papers were placed in the bottom of wells of four 24-well dishes (18 wells for each experimental and control group). MDPC-23 cells (30,000 cells/cm(2)) were plated in the wells and allowed to incubate for 72 hours. The zone of inhibition around the resin discs was measured under inverted light microscopy; the MTT assay was carried out for mitochondrial respiration and cell morphology was measured under SEM. The scores obtained from inhibition zone and MTT assay were analyzed with the Kruskal-Wallis followed by Dunnett tests. In Groups 1, 2, 3 and 4, the thickness of the inhibition zone was 1,593 +/- 12.82 mum, 403 +/- 15.49 mum, 1,516 +/- 9.81 mum and 313 +/- 13.56 mum, respectively. There was statistically significant difference among the experimental and control groups at the 0.05 level of significance. The MTT assay demonstrated that the resin discs of the experimental groups 1, 2, 3 and 4 reduced the cell metabolism by 83%, 40.1%, 75.5% and 24.5%. Only between the Groups 2 and 4 was there no statistically significant difference for mitochondrial respiration. Close to the resin discs, the MDPC-23 cells exhibited rounded shapes, with only a few cellular processes keeping the cells attached to the substrate or, even disruption of plasma membrane. Adjacent to the inhibition zone, the cultured cells exhibited multiple fine cellular processes on the cytoplasmic membrane organized in epithelioid nodules, similar to the morphology observed to the control group. Based on the results, the authors may conclude that the Z-100 resin composite light cured for 20 seconds was more cytopathic to MDPC-23 cells than Z-100 light cured for 40 seconds. The cytotoxic effects of the resin discs decreased after rinsing them with PBS and culture medium. This was confirmed by MTT assay and upon evaluation of the inhibition zone, which was narrower following rinsing of the resin discs.
Resumo:
The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.
Resumo:
The purpose of this in vitro study was to investigate the cervical marginal leakage in class II restorations with chemically cured resin (P10) and light-cured resin (P30) in two types of cavities: conventional and adhesive. The effect of acid-etching in this area was also observed. Dentine adhesive Scotchbond was used in all experimental groups. Leakage was evidenced by Rodamina B dye penetration after thermocycling procedure between 10 degrees C and 50 degrees C temperature and analysed by using Zeiss Stereoscopic Magnifying Glass (10 X). According to the results obtained marginal leakage occurred in all experimental groups, with lower percentage for adhesives cavities when enamel acid-etching and light-cured resin P30 was used.