905 resultados para complete spinal cord injury


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously showed in dissociated cultures of fetal rat spinal cord that disinhibition-induced bursting is based on intrinsic spiking, network recruitment, and a network refractory period after the bursts. A persistent sodium current (I(NaP)) underlies intrinsic spiking, which, by recurrent excitation, generates the bursting activity. Although full blockade of I(NaP) with riluzole disrupts such bursting, the present study shows that partial blockade of I(NaP) with low doses of riluzole maintains bursting activity with unchanged burst rate and burst duration. More important, low doses of riluzole turned bursts composed of persistent activity into bursts composed of oscillatory activity at around 5 Hz. In a search for the mechanisms underlying the generation of such intraburst oscillations, we found that activity-dependent synaptic depression was not changed with low doses of riluzole. On the other hand, low doses of riluzole strongly increased spike-frequency adaptation and led to early depolarization block when bursts were simulated by injecting long current pulses into single neurons in the absence of fast synaptic transmission. Phenytoin is another I(NaP) blocker. When applied in doses that reduced intrinsic activity by 80-90%, as did low doses of riluzole, it had no effect either on spike-frequency adaptation or on depolarization block. Nor did phenytoin induce intraburst oscillations after disinhibition. A theoretical model incorporating a depolarization block mechanism could reproduce the generation of intraburst oscillations at the network level. From these findings we conclude that riluzole-induced intraburst oscillations are a network-driven phenomenon whose major accommodation mechanism is depolarization block arising from strong sodium channel inactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To describe outcome after an alternative unilateral approach to the thoracolumbar spine for dorsal laminectomy. STUDY DESIGN: Retrospective clinical study. ANIMALS: Dogs (n=14) with thoracolumbar spinal cord compression. METHODS: Thoracolumbar spinal cord compression was lateral (6 dogs), dorsal (4), and dorsolateral (4) caused by subarachnoid (7) and synovial cysts (2) and intradural-extramedullary neoplasia (5). All dogs were treated by dorsal laminectomy with osteotomy of the spinous process using a unilateral paramedian approach. The contralateral paraspinal muscles were not stripped from the spinous process and the osteoligamentous complexes were preserved. Retraction of the spinous process and muscles to the contralateral side resulted in complete visualization of the dorsal vertebral arch thereby allowing dorsal laminectomy to be performed. RESULTS: No technique complications occurred. Approximately 75% exposure of the spinal cord (dorsal and lateral compartments) was achieved providing adequate visualization and treatment of the lesions. Transient deterioration of neurologic state occurred in 5 dogs because of extensive spinal cord manipulation. At long-term follow-up, 6 dogs were normal, 6 had clinical improvement, and 2 were unchanged. CONCLUSION: Dorsal laminectomy after osteotomy and retraction of the spinous process may be considered in canine patients with dorsal, dorsolateral, or lateral compression to facilitate adequate decompression of the spinal cord. CLINICAL SIGNIFICANCE: This surgical technique offers an alternative approach to the thoracolumbar spine and spinal cord by a modified dorsal laminectomy that preserves the paraspinal muscle integrity on the contralateral side.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report two patients with subjectively progressive sensory symptoms and gait disturbance due to cobalamin deficiency, but only slight or absent abnormalities on neurological examination. In both patients, spinal MRI provided evidence for a myelopathic origin of the symptoms, disclosing characteristic T(2) hyperintense signal alterations confined to the posterior columns of the cervical and thoracic spinal cord. The patients illustrate the early clinical presentation of subacute combined degeneration (SCD) with a sensory neuropathy starting with acroparesthesia and Lhermitte's sign. Furthermore, the diagnostic value of spinal MRI for early diagnosis of SCD with characteristic findings is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To provide normal values of the cervical spinal canal and spinal cord dimensions in several planes with respect to spinal level, age, sex, and body height. Materials and Methods This study was approved by the institutional review board; all individuals provided signed informed consent. In a prospective multicenter study, two blinded raters independently examined cervical spine magnetic resonance (MR) images of 140 healthy volunteers who were white. The midsagittal diameters and areas of spinal canal and spinal cord, respectively, were measured at the midvertebral levels of C1, C3, and C6. A multivariate general linear model described the influence of sex, body height, age, and spinal level on the measured values. Results There were differences for sex, spinal level, interaction between sex and level, and body height, while age had significant yet limited influence. Normative ranges for the sagittal diameters and areas of spinal canal and spinal cord were defined at C1, C3, and C6 levels for men and women. In addition to a calculation of normative ranges for a specific sex, spinal level, age, and body height data, data for three different height subgroups at 45 years of age were extracted. These results show a range of the spinal canal dimensions at C1 (from 10.7 to 19.7 mm), C3 (from 9.4 to 17.2 mm), and C6 (from 9.2 to 16.8 mm) levels. Conclusion : The dimensions of the cervical spinal canal and cord in healthy individuals are associated with spinal level, sex, age, and height. © RSNA, 2013 Online supplemental material is available for this article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Cervical vertebral (C) malformation is rarely reported in large breed dogs. Congenital cervical kyphosis (CCK) may result from defects of vertebral segmentation, failure of formation or both. This report describes two cases of C3-C4 CCK in young sighthounds, treated surgically. Case description: An 18-month-old female Deerhound and a six-week-old female Borzoi dog were presented because of the complaints of reluctance to exercise and signs of of neck pain. Both dogs were neurologically normal. Diagnostic imaging revealed C3-C4 deformity, moderate kyphosis, and spinal canal stenosis associated with chronic spinal cord pressure atrophy. Both dogs underwent surgical treatment. Results: A staged two-step surgery starting with dorsal decompression was elected in the Deerhound. After the first surgical procedure, the dog developed focal myelomalacia and phrenic nerve paralysis and was euthanatized. A ventral distraction-fusion technique with two locking plates was performed in the Borzoi. This patient recovered uneventfully and long-term follow-up computed tomography revealed complete spondylodesis. Clinical significance: Until now, CCK has only been described in sighthounds. Congenital cervical kyphosis might be considered a differential diagnosis in these breeds that are presented with signs of cervical pain. Ventral realignment-fusion and bone grafting may be considered for surgical treatment, although the earliest age at which this procedure can and should be performed remains unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. Using somatic and dendritic whole-cell patch-clamp recordings from neurons in the anterior cingulate cortex, we discovered that sciatic nerve injury caused an activity-dependent dysfunction of hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the dendrites of layer 5 pyramidal neurons resulting in enhanced integration of excitatory postsynaptic inputs and increased neuronal firing. Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To assess intramedullary spinal pressure (IMP) in small breed dogs with thoracolumbar disk extrusion. STUDY DESIGN Prospective cohort study. ANIMALS Small breed dogs (n = 14) with thoracolumbar disk extrusion undergoing hemilaminectomy and healthy chondrodystrophic laboratory dogs (control; n = 3) without spinal disease. METHODS Diagnosis was based on clinical and neurological examinations and magnetic resonance imaging (MRI) and was confirmed intraoperatively. A standardized anesthesia protocol and surgical procedure were used to minimize factors that could influence IMP. Intramedullary pressure was measured through a minidurotomy at the site of spinal cord compression using a fiber optic catheter inserted perpendicular to the longitudinal axis of the spinal cord. Measurements were taken after hemilaminectomy and again after removal of extruded disk material. RESULTS Affected dogs had significantly higher IMP compared to control dogs (P = .008) and IMP decreased significantly post-decompression compared with initial values (P < .001). No correlation was found between IMP and neurologic grade, degree of spinal cord compression on MRI, or signal intensity changes on MRI. CONCLUSION Acute thoracolumbar disk extrusion is associated with increased IMP in small breed dogs and surgical decompression results in an immediate decrease of IMP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycoplasma pneumoniae (M. pneumoniae) frequently causes community-acquired respiratory tract infection and often presents as atypical pneumonia. Following airborne infection and a long incubation period, affected patients mostly suffer from mild or even asymptomatic and self-limiting disease. In particular in school-aged children, M. pneumoniae is associated with a wide range of extrapulmonary manifestations including central nervous system (CNS) disease. In contrast to children, severe CNS manifestations are rarely observed in adults. We report a case of a 37 year-old previously healthy immunocompetent adult with fulminant M. pneumoniae-induced progressive encephalomyelitis who was initially able to walk to the emergency department. A few hours later, she required controlled mechanical ventilation for ascending transverse spinal cord syndrome, including complete lower extremity paraplegia. Severe M. pneumoniae-induced encephalomyelitis was postulated, and antimicrobial, anti-inflammatory and immunosuppressive therapy was applied on the intensive care unit. Despite early and targeted therapy using four different immunosuppressive strategies, clinical success was limited. In our patient, locked-in syndrome developed followed by persistent minimally conscious state. The neurological status was unchanged until day 230 of follow-up. Our case underlines that severe M. pneumoniae- related encephalomyelitis must not only be considered in children, but also in adults. Moreover, it can be fulminant and fatal in adults. Our case enhances the debate for an optimal antimicrobial agent with activity beyond the blood-brain barrier. Furthermore, it may underline the difficulty in clinical decision making regarding early antimicrobial treatment in M. pneumoniae disease, which is commonly self-limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is attributed to mutations in the SMN1 gene, leading to loss of spinal cord motor neurons. The neurotropic Sindbis virus vector system was used to investigate a role for the survival motor neuron (SMN) protein in regulating neuronal apoptosis. Here we show that SMN protects primary neurons and differentiated neuron-like stem cells, but not cultured cell lines from virus-induced apoptotic death. SMN also protects neurons in vivo and increases survival of virus-infected mice. SMN mutants (SMNΔ7 and SMN-Y272C) found in patients with SMA not only lack antiapoptotic activity but also are potently proapoptotic, causing increased neuronal apoptosis and animal mortality. Full-length SMN is proteolytically processed in brains undergoing apoptosis or after ischemic injury. Mutation of an Asp-252 of SMN abolished cleavage of SMN and increased the antiapoptotic function of full-length SMN in neurons. Taken together, deletions or mutations of the C terminus of SMN that result from proteolysis, splicing (SMNΔ7), or germ-line mutations (e.g., Y272C), produce a proapoptotic form of SMN that may contribute to neuronal death in SMA and perhaps other neurodegenerative disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that when telencephalic neural progenitors are briefly exposed to bone morphogenetic protein 2 (BMP2) in culture, their developmental fate is changed from neuronal cells to astrocytic cells. BMP2 significantly reduced the number of cells expressing microtubule-associated protein 2, a neuronal marker, and cells expressing nestin, a marker for undifferentiated neural precursors, but BMP2 increased the number of cells expressing S100-β, an astrocytic marker. In telencephalic neuroepithelial cells, BMP2 up-regulated the expression of negative helix–loop–helix (HLH) factors Id1, Id3, and Hes-5 (where Hes is homologue of hairy and Enhancer of Split) that inhibited the transcriptional activity of neurogenic HLH transcription factors Mash1 and neurogenin. Ectopic expression of either Id1 or Id3 (where Id is inhibitor of differentiation) inhibited neurogenesis of neuroepithelial cells, suggesting an important role for these HLH proteins in the BMP2-mediated changes in the neurogenic fate of these cells. Because gliogenesis in the brain and spinal cord, derived from implanted neural stem cells or induced by injury, is responsible for much of the failure of neuronal regeneration, this work may lead to a therapeutic strategy to minimize this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue injury is associated with sensitization of nociceptors and subsequent changes in the excitability of central (spinal) neurons, termed central sensitization. Nociceptor sensitization and central sensitization are considered to underlie, respectively, development of primary hyperalgesia and secondary hyperalgesia. Because central sensitization is considered to reflect plasticity at spinal synapses, the spinal cord has been the principal focus of studies of mechanisms of hyperalgesia. Not surprisingly, glutamate, acting at a spinal N-methyl-d-aspartate (NMDA) receptor, has been implicated in development of secondary hyperalgesia associated with somatic, neural, and visceral structures. Downstream of NMDA receptor activation, spinal nitric oxide (NO⋅), protein kinase C, and other mediators have been implicated in maintaining such hyperalgesia. Accumulating evidence, however, reveals a significant contribution of supraspinal influences to development and maintenance of hyperalgesia. Spinal cord transection prevents development of secondary, but not primary, mechanical and/or thermal hyperalgesia after topical mustard oil application, carrageenan inflammation, or nerve-root ligation. Similarly, inactivation of the rostral ventromedial medulla (RVM) attenuates hyperalgesia and central sensitization in several models of persistent pain. Inhibition of medullary NMDA receptors or NO⋅ generation attenuates somatic and visceral hyperalgesia. In support, topical mustard oil application or colonic inflammation increases expression of NO⋅ synthase in the RVM. These data suggest a prominent role for the RVM in mediating the sensitization of spinal neurons and development of secondary hyperalgesia. Results to date suggest that peripheral injury and persistent input engage spinobulbospinal mechanisms that may be the prepotent contributors to central sensitization and development of secondary hyperalgesia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review presents a view of hyperalgesia and allodynia not typical of the field as a whole. That is, exaggerated pain is presented as one of many natural consequences of peripheral infection and injury. The constellation of changes that results from such immune challenges is called the sickness response. This sickness response results from immune-to-brain communication initiated by proinflammatory cytokines released by activated immune cells. In response to signals it receives from the immune system, the brain orchestrates the broad array of physiological, behavioral, and hormonal changes that comprise the sickness response. The neurocircuitry and neurochemistry of sickness-induced hyperalgesia are described. One focus of this discussion is on the evidence that spinal cord microglia and astrocytes are key mediators of sickness-induced hyperalgesia. Last, evidence is presented that hyperalgesia and allodynia also result from direct immune activation, rather than neural activation, of these same spinal cord glia. Such glial activation is induced by viruses such as HIV-1 that are known to invade the central nervous system. Implications of exaggerated pain states created by peripheral and central immune activation are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms by which infants and children process pain should be viewed within the context of a developing sensory nervous system. The study of the neurophysiological properties and connectivity of sensory neurons in the developing spinal cord dorsal horn of the intact postnatal rat has shed light on the way in which the newborn central nervous system analyzes cutaneous innocuous and noxious stimuli. The receptive field properties and evoked activity of newborn dorsal horn cells to single repetitive and persistent innocuous and noxious inputs are developmentally regulated and reflect the maturation of excitatory transmission within the spinal cord. These changes will have an important influence on pain processing in the postnatal period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compelling evidence has accumulated over the last several years from our laboratory, as well as others, indicating that central hyperactive states resulting from neuronal plastic changes within the spinal cord play a critical role in hyperalgesia associated with nerve injury and inflammation. In our laboratory, chronic constriction injury of the common sciatic nerve, a rat model of neuropathic pain, has been shown to result in activation of central nervous system excitatory amino acid receptors and subsequent intracellular cascades including protein kinase C translocation and activation, nitric oxide production, and nitric oxide-activated poly(ADP ribose) synthetase activation. Similar cellular mechanisms also have been implicated in the development of tolerance to the analgesic effects of morphine. A recently observed phenomenon, the development of “dark neurons,” is associated with both chronic constriction injury and morphine tolerance. A site of action involved in both hyperalgesia and morphine tolerance is in the superficial laminae of the spinal cord dorsal horn. These observations suggest that hyperalgesia and morphine tolerance may be interrelated at the level of the superficial laminae of the dorsal horn by common neural substrates that interact at the level of excitatory amino acid receptor activation and subsequent intracellular events. The demonstration of interrelationships between neural mechanisms underlying hyperalgesia and morphine tolerance may lead to a better understanding of the neurobiology of these two phenomena in particular and pain in general. This knowledge may also provide a scientific basis for improved pain management with opiate analgesics.