999 resultados para coefficienti binomiali combinatoria differenze finite
Resumo:
A numerical model for shallow-water equations has been built and tested on the Yin-Yang overset spherical grid. A high-order multimoment finite-volume method is used for the spatial discretization in which two kinds of so-called moments of the physical field [i.e., the volume integrated average ( VIA) and the point value (PV)] are treated as the model variables and updated separately in time. In the present model, the PV is computed by the semi-implicit semi-Lagrangian formulation, whereas the VIA is predicted in time via a flux-based finite-volume method and is numerically conserved on each component grid. The concept of including an extra moment (i.e., the volume-integrated value) to enforce the numerical conservativeness provides a general methodology and applies to the existing semi-implicit semi-Lagrangian formulations. Based on both VIA and PV, the high-order interpolation reconstruction can only be done over a single grid cell, which then minimizes the overlapping zone between the Yin and Yang components and effectively reduces the numerical errors introduced in the interpolation required to communicate the data between the two components. The present model completely gets around the singularity and grid convergence in the polar regions of the conventional longitude-latitude grid. Being an issue demanding further investigation, the high-order interpolation across the overlapping region of the Yin-Yang grid in the current model does not rigorously guarantee the numerical conservativeness. Nevertheless, these numerical tests show that the global conservation error in the present model is negligibly small. The model has competitive accuracy and efficiency.
Resumo:
A more generalized model of a beam resting on a tensionless Reissner foundation is presented. Compared with the Winkler foundation model, the Reissner foundation model is a much improved one. In the Winkler foundation model, there is no shear stress inside the foundation layer and the foundation is assumed to consist of closely spaced, independent springs. The presence of shear stress inside Reissner foundation makes the springs no longer independent and the foundation to deform as a whole. Mathematically, the governing equation of a beam on Reissner foundation is sixth order differential equation compared with fourth order of Winkler one. Because of this order change of the governing equation, new boundary conditions are needed and related discussion is presented. The presence of the shear stress inside the tensionless Reissner foundation together with the unknown feature of contact area/length makes the problem much more difficult than that of Winkler foundation. In the model presented here, the effects of beam dimension, gap distance, loading asymmetry and foundation shear stress on the contact length are all incorporated and studied. As the beam length increases, the results of a finite beam with zero gap distance converge asymptotically to those obtained by the previous model for an infinitely long beam. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The rapid evolution of nanotechnology appeals for the understanding of global response of nanoscale systems based on atomic interactions, hence necessitates novel, sophisticated, and physically based approaches to bridge the gaps between various length and time scales. In this paper, we propose a group of statistical thermodynamics methods for the simulations of nanoscale systems under quasi-static loading at finite temperature, that is, molecular statistical thermodynamics (MST) method, cluster statistical thermodynamics (CST) method, and the hybrid molecular/cluster statistical thermodynamics (HMCST) method. These methods, by treating atoms as oscillators and particles simultaneously, as well as clusters, comprise different spatial and temporal scales in a unified framework. One appealing feature of these methods is their "seamlessness" or consistency in the same underlying atomistic model in all regions consisting of atoms and clusters, and hence can avoid the ghost force in the simulation. On the other hand, compared with conventional MD simulations, their high computational efficiency appears very attractive, as manifested by the simulations of uniaxial compression and nanoindenation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
We present a slice-sampling method and study the ensemble evolution of a large finite nonlinear system in order to model materials failure. There is a transitional region of failure probability. Its size effect is expressed by a slowly decaying scaling law. In a meso-macroscopic range (similar to 10(5)) in realistic failure, the diversity cannot be ignored. Sensitivity to mesoscopic details governs the phenomena. (C) 1997 Published by Elsevier Science B.V.
Resumo:
The inequities in health care and housing access experienced by low-income women in the United States are a continuing concern. This article addresses the interrelationships between housing and health as experienced by low-income clients so that health care practitioners can begin to build active and effective health-promoting partnerships with clients, their families, and their communities. A case study is presented that describes the actual experience of a woman living in a low-income housing development and its effect on her health and access to health care. The importance of the role of midwives in addressing the health care and advocacy needs of women in substandard housing is highlighted.
Resumo:
Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of A] layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. 'Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3/Al interface is minimal when Al2O3 layer and Al layer have the same thickness.
Resumo:
Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.