800 resultados para cloud computing datacenter performance QoS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the study and experimental tests for the viability analysis of using multiple wireless technologies in urban traffic light controllers in a Smart City environment. Communication drivers, different types of antennas, data acquisition methods and data processing for monitoring the network are presented. The sensors and actuators modules are connected in a local area network through two distinct low power wireless networks using both 868 MHz and 2.4 GHz frequency bands. All data communications using 868 MHz go through a Moteino. Various tests are made to assess the most advantageous features of each communication type. The experimental results show better range for 868 MHz solutions, whereas the 2.4 GHz presents the advantage of self-regenerating the network and mesh. The different pros and cons of both communication methods are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time Series Analysis of multispectral satellite data offers an innovative way to extract valuable information of our changing planet. This is now a real option for scientists thanks to data availability as well as innovative cloud-computing platforms, such as Google Earth Engine. The integration of different missions would mitigate known issues in multispectral time series construction, such as gaps due to clouds or other atmospheric effects. With this purpose, harmonization among Landsat-like missions is possible through statistical analysis. This research offers an overview of the different instruments from Landsat and Sentinel missions (TM, ETM, OLI, OLI-2 and MSI sensors) and products levels (Collection-2 Level-1 and Surface Reflectance for Landsat and Level-1C and Level-2A for Sentinel-2). Moreover, a cross-sensors comparison was performed to assess the interoperability of the sensors on-board Landsat and Sentinel-2 constellations, having in mind a possible combined use for time series analysis. Firstly, more than 20,000 pairs of images almost simultaneously acquired all over Europe were selected over a period of several years. The study performed a cross-comparison analysis on these data, and provided an assessment of the calibration coefficients that can be used to minimize differences in the combined use. Four of the most popular vegetation indexes were selected for the study: NDVI, EVI, SAVI and NDMI. As a result, it is possible to reconstruct a longer and denser harmonized time series since 1984, useful for vegetation monitoring purposes. Secondly, the spectral characteristics of the recent Landsat-9 mission were assessed for a combined use with Landsat-8 and Sentinel-2. A cross-sensor analysis of common bands of more than 3,000 almost simultaneous acquisitions verified a high consistency between datasets. The most relevant discrepancy has been observed in the blue and SWIRS bands, often used in vegetation and water related studies. This analysis was supported with spectroradiometer ground measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi anni la necessità di processare e mantenere dati di qualsiasi natura è aumentata considerevolmente, in aggiunta a questo, l’obsolescenza del modello centralizzato ha contribuito alla sempre più frequente adozione del modello distribuito. Inevitabile dunque l’aumento di traffico che attraversa i nodi appartenenti alle infrastrutture, un traffico sempre più in aumento e che con l’avvento dell’IoT, dei Big Data, del Cloud Computing, del Serverless Computing etc., ha raggiunto picchi elevatissimi. Basti pensare che se prima i dati erano contenuti in loco, oggi non è assurdo pensare che l’archiviazione dei propri dati sia completamente affidata a terzi. Così come cresce, quindi, il traffico che attraversa i nodi facenti parte di un’infrastruttura, cresce la necessità che questo traffico sia filtrato e gestito dai nodi stessi. L’obbiettivo di questa tesi è quello di estendere un Message-oriented Middleware, in grado di garantire diverse qualità di servizio per la consegna di messaggi, in modo da accelerarne la fase di routing verso i nodi destinazione. L’estensione consiste nell’aggiungere al Message-oriented Middleware, precedentemente implementato, la funzione di intercettare i pacchetti in arrivo (che nel caso del middleware in questione possono rappresentare la propagazione di eventi) e redirigerli verso un nuovo nodo in base ad alcuni parametri. Il Message-oriented Middleware oggetto di tesi sarà considerato il message broker di un modello pub/sub, pertanto la redirezione deve avvenire con tempi molto bassi di latenza e, a tal proposito, deve avvenire senza l’uscita dal kernel space del sistema operativo. Per questo motivo si è deciso di utilizzare eBPF, in particolare il modulo XDP, che permette di scrivere programmi che eseguono all’interno del kernel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industry 4.0 refers to the 4th industrial revolution and at its bases, we can see the digitalization and the automation of the assembly line. The whole production process has improved and evolved thanks to the advances made in networking, and AI studies, which include of course machine learning, cloud computing, IoT, and other technologies that are finally being implemented into the industrial scenario. All these technologies have in common a need for faster, more secure, robust, and reliable communication. One of the many solutions for these demands is the use of mobile communication technologies in the industrial environment, but which technology is better suited for these demands? Of course, the answer isn’t as simple as it seems. The 4th industrial revolution has a never seen incomparable potential with respect to the previous ones, every factory, enterprise, or company have different network demands, and even in each of these infrastructures, the demands may diversify by sector, or by application. For example, in the health care industry, there may be e a need for increased bandwidth for the analysis of high-definition videos or, faster speeds in order to have analytics occur in real-time, and again another application might be higher security and reliability to protect patients’ data. As seen above, choosing the right technology for the right environment and application, considers many things, and the ones just stated are but a speck of dust with respect to the overall picture. In this thesis, we will investigate a comparison between the use of two of the available technologies in use for the industrial environment: Wi-Fi 6 and 5G Private Networks in the specific case of a steel factory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con il lancio di nuove applicazioni tecnologiche come l'Internet of Things, Big Data, Cloud computing e tecnologie mobili che stanno accelerando in maniera spropositata la velocità di cambiamento, i comportamenti, le abitudini e i modi di vivere sono completamente mutati nel favorire un mondo di tecnologie digitali che agevolino le operazioni quotidiane. Questi progressi stanno velocemente cambiando il modo in cui le aziende fanno business, con grandi ripercussioni in tutto quello che è il contesto aziendale, ma non solo. L’avvento della Digital Transformation ha incrementato questi fenomeni e la si potrebbe definire come causa scatenante di tutti i mutamenti che stiamo vivendo. La velocità e l’intensità del cambiamento ha effetti disruptive rispetto al passato, colpendo numerosi settori economici ed abitudini dei consumatori. L’obiettivo di questo elaborato è di analizzare la trasformazione digitale applicata al caso dell’azienda Alfa, comprendendone le potenzialità. In particolare, si vogliono studiare i principali risvolti portati da tale innovazione, le più importanti iniziative adottate in merito alle nuove tecnologie implementate e i benefici che queste portano in campo strategico, di business e cultura aziendale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo lavoro di tesi è incentrato sullo sviluppo di una soluzione applicativa nell'ambito dell'integrazione di sistemi software basati su tecnologie considerate legacy. In particolar modo è stato studiata una soluzione integrativa per il popolare ERP gestionale Sap su piattaforma Cloud OpenShift. La soluzione è articolata su diversi livelli basati sull'architettura proposta da Gartner nell'ambito della Digital Integration Hub. È stata sviluppata tramite tecnologie open source leader nel settore e tecnologie cloud avanzate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usage of Optical Character Recognition’s (OCR, systems is a widely spread technology into the world of Computer Vision and Machine Learning. It is a topic that interest many field, for example the automotive, where becomes a specialized task known as License Plate Recognition, useful for many application from the automation of toll road to intelligent payments. However, OCR systems need to be very accurate and generalizable in order to be able to extract the text of license plates under high variable conditions, from the type of camera used for acquisition to light changes. Such variables compromise the quality of digitalized real scenes causing the presence of noise and degradation of various type, which can be minimized with the application of modern approaches for image iper resolution and noise reduction. Oneclass of them is known as Generative Neural Networks, which are very strong ally for the solution of this popular problem.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In a general purpose cloud system efficiencies are yet to be had from supporting diverse applications and their requirements within a storage system used for a private cloud. Supporting such diverse requirements poses a significant challenge in a storage system that supports fine grained configuration on a variety of parameters. This paper uses the Ceph distributed file system, and in particular its global parameters, to show how a single changed parameter can effect the performance for a range of access patterns when tested with an OpenStack cloud system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Modern scientific discoveries are driven by an unsatisfiable demand for computational resources. High-Performance Computing (HPC) systems are an aggregation of computing power to deliver considerably higher performance than one typical desktop computer can provide, to solve large problems in science, engineering, or business. An HPC room in the datacenter is a complex controlled environment that hosts thousands of computing nodes that consume electrical power in the range of megawatts, which gets completely transformed into heat. Although a datacenter contains sophisticated cooling systems, our studies indicate quantitative evidence of thermal bottlenecks in real-life production workload, showing the presence of significant spatial and temporal thermal and power heterogeneity. Therefore minor thermal issues/anomalies can potentially start a chain of events that leads to an unbalance between the amount of heat generated by the computing nodes and the heat removed by the cooling system originating thermal hazards. Although thermal anomalies are rare events, anomaly detection/prediction in time is vital to avoid IT and facility equipment damage and outage of the datacenter, with severe societal and business losses. For this reason, automated approaches to detect thermal anomalies in datacenters have considerable potential. This thesis analyzed and characterized the power and thermal characteristics of a Tier0 datacenter (CINECA) during production and under abnormal thermal conditions. Then, a Deep Learning (DL)-powered thermal hazard prediction framework is proposed. The proposed models are validated against real thermal hazard events reported for the studied HPC cluster while in production. This thesis is the first empirical study of thermal anomaly detection and prediction techniques of a real large-scale HPC system to the best of my knowledge. For this thesis, I used a large-scale dataset, monitoring data of tens of thousands of sensors for around 24 months with a data collection rate of around 20 seconds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Floating-point computing with more than one TFLOP of peak performance is already a reality in recent Field-Programmable Gate Arrays (FPGA). General-Purpose Graphics Processing Units (GPGPU) and recent many-core CPUs have also taken advantage of the recent technological innovations in integrated circuit (IC) design and had also dramatically improved their peak performances. In this paper, we compare the trends of these computing architectures for high-performance computing and survey these platforms in the execution of algorithms belonging to different scientific application domains. Trends in peak performance, power consumption and sustained performances, for particular applications, show that FPGAs are increasing the gap to GPUs and many-core CPUs moving them away from high-performance computing with intensive floating-point calculations. FPGAs become competitive for custom floating-point or fixed-point representations, for smaller input sizes of certain algorithms, for combinational logic problems and parallel map-reduce problems. © 2014 Technical University of Munich (TUM).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is about a PV system linked to the electric grid through power converters under cloud scope. The PV system is modeled by the five parameters equivalent circuit and a MPPT procedure is integrated into the modeling. The modeling for the converters models the association of a DC-DC boost with a three-level inverter. PI controllers are used with PWM by sliding mode control associated with space vector modulation controlling the booster and the inverter. A case study addresses a simulation to assess the performance of a PV system linked to the electric grid. Conclusions regarding the integration of the PV system into the electric grid are presented. © IFIP International Federation for Information Processing 2015.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cloud data centers have been progressively adopted in different scenarios, as reflected in the execution of heterogeneous applications with diverse workloads and diverse quality of service (QoS) requirements. Virtual machine (VM) technology eases resource management in physical servers and helps cloud providers achieve goals such as optimization of energy consumption. However, the performance of an application running inside a VM is not guaranteed due to the interference among co-hosted workloads sharing the same physical resources. Moreover, the different types of co-hosted applications with diverse QoS requirements as well as the dynamic behavior of the cloud makes efficient provisioning of resources even more difficult and a challenging problem in cloud data centers. In this paper, we address the problem of resource allocation within a data center that runs different types of application workloads, particularly CPU- and network-intensive applications. To address these challenges, we propose an interference- and power-aware management mechanism that combines a performance deviation estimator and a scheduling algorithm to guide the resource allocation in virtualized environments. We conduct simulations by injecting synthetic workloads whose characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to fulfill contracted SLAs of real-world environments while reducing energy costs by as much as 21%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a novel methodology aimed at minimizing the probability of network failure and the failure impact (in terms of QoS degradation) while optimizing the resource consumption is introduced. A detailed study of MPLS recovery techniques and their GMPLS extensions are also presented. In this scenario, some features for reducing the failure impact and offering minimum failure probabilities at the same time are also analyzed. Novel two-step routing algorithms using this methodology are proposed. Results show that these methods offer high protection levels with optimal resource consumption