951 resultados para chromosome replication


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian reoviruses exhibit a large host range and infected cells are generally killed; however, most studies examined only a few cell types and host species, and are probably not representative of all possible interactions between virus and host cell. Many questions thus remain concerning the nature of cellular factors that affect viral replication and cell death. In the present work, it was observed that replication of the classical mammalian reovirus serotype 3 Dearing in a bat epithelial cell line, Tb1.Lu, does not result in cell lysis and is rapidly reduced to very low levels. Prior uncoating of virions by chymotrypsin treatment, to generate infectious subviral particles, increased the initial level of infection but without any significant effect on further viral replication or cell survival. Infected cells remain resistant to virus reinfection and secrete an antiviral factor, most likely interferon, that is protective against the unrelated encephalomyocarditis virus. Although, the transformed status of a cell is believed to promote reovirus replication and viral “oncolysis”, resistant Tb1.Lu cells exhibit a classical phenotype of transformed cells by forming colonies in semisolid soft agar medium. Further transduction of Tb.Lu cells with a constitutively-active Ras oncogene does not seem cell growth or reovirus effect on these cells. Infected Tb1.Lu cells can produce low-level of infectious virus for a long time without any apparent effect, although these cells are resistant to reinfection. The results suggest that Tb1.Lu cells can mount an unusual antiviral response. Specific properties of bat cells may thus be in part responsible for the ability of the animals to act as reservoirs for viruses in general and for novel reoviruses in particular. Their peculiar resistance to cell lysis also makes Tb1.Lu cells an attractive model to study the cellular and viral factors that determine the ability of reovirus to replicate and destroy infected cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collection of X chromosome insertions (PX) lethal lines, which was isolated from a screen for essential genes on the X chromosome, was characterized by means of cloning the insertion sites, mapping the sites within genomic DNA and determination of the associated reporter gene expresssion patterns. The established STS flanking the P element insertion sites were submitted to EMBL nucleotide databases and their in situ data together with the enhancer trap expression patterns have been deposited in the FlyView database. The characterized lines are now available to be used by the scientific community for a detailed analysis of the newly established lethal gene functions. One of the isolated genes on the X chromosome was the Drosophila gene Wnt5 (DWnt5). From two independent screens, one lethal and three homozygous viable alleles were recovered, allowing the identification of two distinct functions for DWnt5 in the fly. Observations on the developing nervous system of mutant embryos suggest that DWnt5 activity affects axon projection pattern. Elevated levels of DWNT5 activity in the midline cells of the central nervous system causes improper establishment and maintenance of the axonal pathways. Our analysis of the expression and mutant phenotype indicates that DWnt5 function in a process needed for proper organization of the nervous system. A second and novel function of DWnt5 is the control of the body size by regulation of the cell number rather than affecting the size of cells. Moreover, experimentally increased DWnt5 levels in a post-mitotic region of the eye imaginal disc causes abnormal cell cycle progression, resulting in additional ommatidia in the adult eye when compared to wild type. The increased cell number and the effects on the cell cycle after exposure to high DWNT5 levels is the result of a failure to downregulate cyclin B and therefore the unsuccessful establishment of a G1 arrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a system to hunt and reuse special gene integration sites that allow for high and stable gene expression. A vector, named pRGFP8, was constructed. The plasmid pRGFP8 contains a reporter gene, gfp2 and two extraneous DNA fragments. The gene gfp2 makes it possible to screen the high expression regions on the chromosome. The extraneous DNA fragments can help to create the unique loci on the chromosome and increase the gene targeting frequency by increasing the homology. After transfection into Chinese hamster ovary cells (CHO) cells, the linearized pRGFP8 can integrate into the chromosome of the host cells and form the unique sites. With FACS, 90 millions transfected cells were sorted and the cells with strongest GFP expression were isolated, and then 8 stable high expression GFP CHO cell lines were selected as candidates for the new host cell. Taking the unique site created by pRGFP8 on the chromosome in the new host cells as a targeting locus, the gfp2 gene was replaced with the gene of interest, human ifngamma, by transfecting the targeting plasmid pRIH-IFN. Then using FACS, the cells with the dimmest GFP fluorescence were selected. These cells showed they had strong abilities to produce the protein of interest, IFN-gamma. During the gene targeting experiment, we found there is positive correlation between the fluorescence density of the GFP CHO host cells and the specific production rate of IFN-gamma. This result shows that the strategy in our expression system is correct: the production of the interesting protein increases with the increase fluorescence of the GFP host cells. This system, the new host cell lines and the targeting vector, can be utilized for highly expressing the gene of interest. More importantly, by using FACS, we can fully screen all the transfected cells, which can reduce the chances of losing the best cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrent spontaneous abortion (RSA) is defined as the loss of three or more consecutive pregnancies during the first trimester of embryonic intrauterine development. This kind of human infertility is frequent among the general population since it affects 1 to 5% of women. In half of the cases the etiology remains unelucidated. In the present study, we used interspecific recombinant congenic mouse strains (IRCS) in the aim to identify genes responsible for embryonic lethality. Applying a cartographic approach using a genotype/phenotype association, we identified a minimal QTL region, of about 6 Mb on chromosome 1, responsible for a high rate of embryonic death (,30%). Genetic analysis suggests that the observed phenotype is linked to uterine dysfunction. Transcriptomic analysis of the uterine tissue revealed a preferential deregulation of genes of this region compared to the rest of the genome. Some genes from the QTL region are associated with VEGF signaling, mTOR signaling and ubiquitine/proteasome-protein degradation pathways. This work may contribute to elucidate the molecular basis of a multifactorial and complex human disorder as RSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10–15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients. Methodology/Principal Findings: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LODmax of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations. Conclusions/Significance: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrent spontaneous abortion (RSA) is defined as the loss of three or more consecutive pregnancies during the first trimester of embryonic intrauterine development. This kind of human infertility is frequent among the general population since it affects 1 to 5% of women. In half of the cases the etiology remains unelucidated. In the present study, we used interspecific recombinant congenic mouse strains (IRCS) in the aim to identify genes responsible for embryonic lethality. Applying a cartographic approach using a genotype/phenotype association, we identified a minimal QTL region, of about 6 Mb on chromosome 1, responsible for a high rate of embryonic death (similar to 30%). Genetic analysis suggests that the observed phenotype is linked to uterine dysfunction. Transcriptomic analysis of the uterine tissue revealed a preferential deregulation of genes of this region compared to the rest of the genome. Some genes from the QTL region are associated with VEGF signaling, mTOR signaling and ubiquitine/proteasome-protein degradation pathways. This work may contribute to elucidate the molecular basis of a multifactorial and complex human disorder as RSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue and Chikungunya viruses cause the most important arthropod-borne viral infections for humans. These viruses are predominant in tropical and subtropical regions. In addition, these viruses are predominant in tropical and subtropical regions. Dengue mortality rate is around 1.2 to 3.5% and deaths due to chikungunya fever are around 1 in 1000; however, half of chikungunya-infected patients evolve into a chronic state that can persist for months up to years. There are no antiviral drugs available for DENV and CHIKV treatment and prevention. Moreover, vector control strategies have failed so far. Thus, the development of potent inhibitors for a broad spectrum of RNA viruses is urgently needed. We established and characterized a new embryonic insect cell line from Culex quinquefasciatus mosquito. Also we established the flaviviruses and alphavirus replication, both in C6/36 and Lulo insect cell lines, as well as in Vero cell line. In addition we carried out a reference compound library and reference panel of assays and data for DENV, which provides a benchmark for further studies. During this study, a panel of 9 antiviral molecules, with proven in vitro anti-dengue virus activity and that act at different stages of the DENV life cycle, was selected. Finally, Favipiravir or T-705, was identified as inhibitor in vitro and in vivo of alphaviruses and the mutation K291R in nsP4, which is responsible of the polymerase activity, was found as the mode of action in CHIKV. Interestingly, lysine in motif F1 is also highly conserved in positive-stranded RNA viruses and this might explain the broad spectrum of T-705 antiviral activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mean platelet volume (MPV) and platelet count (PLT) are highly heritable and tightly regulated traits. We performed a genome-wide association study for MPV and identified one SNP, rs342293, as having highly significant and reproducible association with MPV (per-G allele effect 0.016 +/- 0.001 log fL; P < 1.08 x 10(-24)) and PLT (per-G effect -4.55 +/- 0.80 10(9)/L; P < 7.19 x 10(-8)) in 8586 healthy subjects. Whole-genome expression analysis in the 1-MB region showed a significant association with platelet transcript levels for PIK3CG (n = 35; P = .047). The G allele at rs342293 was also associated with decreased binding of annexin V to platelets activated with collagen-related peptide (n = 84; P = .003). The region 7q22.3 identifies the first QTL influencing platelet volume, counts, and function in healthy subjects. Notably, the association signal maps to a chromosome region implicated in myeloid malignancies, indicating this site as an important regulatory site for hematopoiesis. The identification of loci regulating MPV by this and other studies will increase our insight in the processes of megakaryopoiesis and proplatelet formation, and it may aid the identification of genes that are somatically mutated in essential thrombocytosis. (Blood. 2009; 113: 3831-3837)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular uptake of PMOs (phosphorodiamidate morpholino oligomers) can be enhanced by their conjugation to arginine-rich CPPs (cell-penetrating peptides). Here, we discuss our recent findings regarding (R-Ahx-R)(4)AhxB (Ahx is 6-aminohexanoic acid and B is beta-alanine) CPP-PMO conjugates in DMD (Duchenne muscular dystrophy) and murine coronavirus research. An (R-Ahx-R)(4)AhxB-PMO conjugate was the most effective compound in inducing the correction of mutant dystrophin transcripts in myoblasts derived from a canine model of DMD. Similarly, normal levels of dystrophin expression were restored in the diaphragms of mdx mice, with treatment starting at the neonatal stage, and protein was still detecTable 22 weeks after the last dose of an (R-Ahx-R)(4)AhxB-PMO conjugate. Effects of length, linkage and carbohydrate modification of this CPP on the delivery of a PMO were investigated in a coronavirus mouse model. An (R-Ahx-R)(4)AhxB-PMO conjugate effectively inhibited viral replication, in comparison with other peptides conjugated to the same PMO. Shortening the CPP length, modifying it with a mannosylated serine moiety or replacing it with the R(9)F(2) CPP significantly decreased the efficacy of the resulting PPMO (CPP-PMO conjugate). We attribute the success of this CPP to its stability in serum and its capacity to transport PMO to RNA targets in a manner superior to that of poly-arginine CPPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G(2)/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G(2) regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G(2)/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the Go phase or asynchronously replicating cells. Our data suggested that IBV induces a G(2)/M phase arrest in infected cells to promote favorable conditions for viral replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caliciviruses are a major cause of gastroenteritis in humans and cause a wide variety of other diseases in animals. Here, the characterization of protein-protein interactions between the individual proteins of Feline calicivirus (FCV), a model system for other members of the family Caliciviridae, is reported. Using the yeast two-hybrid system combined with a number of other approaches, it is demonstrated that the p32 protein (the picornavirus 2B analogue) of FCV interacts with p39 (2C), p30 (3A) and p76 (3CD). The FCV protease/RNA polymerase (ProPol) p76 was found to form homo-oligomers, as well as to interact with VPg and ORF2, the region encoding the major capsid protein VP1. A weak interaction was also observed between p76 and the minor capsid protein encoded by ORF3 (VP2). ORF2 protein was found to interact with VPg, p76 and VP2. The potential roles of the interactions in calicivirus replication are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The poliovirus cis-acting replication element (CRE) templates the uridylylation of VPg, the protein primer for genome replication. The CRE is a highly conserved structural RNA element in the enteroviruses and located within the polyprotein-coding region of the genome. We have determined the native structure of the CRE, defined the regions of the structure critical for activity, and investigated the influence of genomic location on function. Our results demonstrate that a 14-nucleotide unpaired terminal loop, presented on a suitably stable stem, is all that is required for function. These conclusions complement the recent analysis of the 14-nucleotide terminal loop in the CRE of human rhinovirus type 14. The CRE can be translocated to the 5' noncoding region of the genome, at least 3.7-kb distant from the native location, without adversely influencing activity, and CRE duplications do not adversely influence replication. We do not have evidence for a specific interaction between the CRE and the RNA-binding 3CD(pro) complex, an essential component of the uridylylation reaction, and the mechanism by which the CRE is coordinated and orientated during the reaction remains unclear. These studies provide a detailed overview of the structural determinants required for CRE function, and will facilitate a better understanding of the requirements for picornavirus replication.