947 resultados para cell wall formation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three genes encoding for fungal cell wall degrading enzymes (CWDE), ech42, nag7O and gluc78 from the biocontrol fungus Trichoderma atroviride were transformed into rice mediated by Agrobacterium tumefaciens singly and in all possible combinations. A total of more than 1800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. Our data indicated that gluc78 gene had negative effects on transformation frequency and plant growth. Some regenerated plants with gluc78 gene were stunted; spontaneously produced brown specks; could not tassel. The combination with either one of the two other genes (ech42, nag70) present in the same T-DNA region reduced the negative effect of gluc78 on plant growth. These results indicated that expression of several genes in one T-DNA region interfered with each other and expression of exogenous gene in recipient plant was a complex behavior. (c) 2007 Published by Elsevier Ireland Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel actinomycete strain, designated YIM 002(T), was isolated from a desert soil sample in Gansu Province, north-west China. This actinomycete isolate formed well-differentiated aerial and substrate mycelia. In the early stages of growth, the substrate mycelia fragmented into short or elongated rods. Chemotaxonomically, it contained LL-2,6-diaminopimelic acid in the cell wall. The cell-wall sugars contained ribose and glucose. Phospholipids present were phosphatidylinositol mannosides, phosphatidylinositol and diphosphatidylglycerol. MK-9(H-4) was the predominant menaquinone. The major fatty acids were anteiso C-15:0 (35.92%), anteiso C-17:0 (15.84%), iso C-15:0 (10.40%), iso C-16:0 (7.07%) and C(17:10)w8c (9.37%). The G+C content of the DNA was 70 mol%. Phylogenetic analysis and signature nucleotide data based on 16S rRNA gene sequences showed that strain YIM 002(T) is distinct from all recognized genera of the family Nocardioidaceae in the suborder Propionibacterineae. On the basis of the phenotypic and genotypic characteristics, it is proposed that isolate YIM 002(T) be classified as a novel species in a new genus, Jiangella gansuensis gen. nov., sp. nov. The type strain is YIM 002(T) (= DSM 44835(T) = CCTCC AA 204001(T) = KCTC 19044(T)).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lacticin 3147, enterocin AS-48, lacticin 481, variacin, and sakacin P are bacteriocins offering promising perspectives in terms of preservation and shelf-life extension of food products and should find commercial application in the near future. The studies detailing their characterization and bio-preservative applications are reviewed. Transcriptomic analyses showed a cell wall-targeted response of Lactococcus lactis IL1403 during the early stages of infection with the lytic bacteriophage c2, which is probably orchestrated by a number of membrane stress proteins and involves D-alanylation of membrane lipoteichoic acids, restoration of the physiological proton motive force disrupted following bacteriophage infection, and energy conservation. Sequencing of the eight plasmids of L. lactis subsp. cremoris DPC3758 from raw milk cheese revealed three anti-phage restriction/modification (R/M) systems, immunity/resistance to nisin, lacticin 481, cadmium and copper, and six conjugative/mobilization regions. A food-grade derivative strain with enhanced bacteriophage resistance was generated via stacking of R/M plasmids. Sequencing and functional analysis of the four plasmids of L. lactis subsp. lactis biovar. diacetylactis DPC3901 from raw milk cheese revealed genes novel to Lactococcus and typical of bacteria associated with plants, in addition to genes associated with plant-derived lactococcal strains. The functionality of a novel high-affinity regulated system for cobalt uptake was demonstrated. The bacteriophage resistant and bacteriocin-producing plasmid pMRC01 places a metabolic burden on lactococcal hosts resulting in lowered growth rates and increased cell permeability and autolysis. The magnitude of these effects is strain dependent but not related to bacteriocin production. Starters’ acidification capacity is not significantly affected. Transcriptomic analyses showed that pMRC01 abortive infection (Abi) system is probably subjected to a complex regulatory control by Rgg-like ORF51 and CopG-like ORF58 proteins. These regulators are suggested to modulate the activity of the putative Abi effectors ORF50 and ORF49 exhibiting topology and functional similarities to the Rex system aborting bacteriophage λ lytic growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies were undertaken to investigate proteolysis of the caseins during the initial stages of maturation of Cheddar cheese. Isolated caseins were hydrolyzed by enzymes thought to be of importance during cheese ripening and the resulting peptides isolated and identified. Large peptides were also isolated from Cheddar cheese and identified, thus enabling the extent to which casein degradation studies could be extrapolated to cheese to be established. The proteolytic specificity of chymosin on bovine αs1- and αs2-caseins and of plasmin on bovine αs1-casein were determined. The action of cathepsin D, the principal indigenous acid milk proteinase, on caseins was studied and its pH optimum and sensitivity to NaCI determined. The action of cathepsin D on αs1-, αs2-, β- and κ-caseins was compared with that of chymosin and was found to be generally similar for the hydrolysis of αs1- and κ-caseins but to differ for αs2-and β- caseins. β-Casein in solution was hydrolyzed by cell wall-associated proteinases from three strains of Lactococcus lactis; comparison of electrophoretograms of the hydrolyzates with those of Cheddar cheese indicated that no peptides produced by cell wall-associated proteinases were detectable in the cheeses. All the major peptides in the water-insoluble fraction of Cheddar cheese were isolated and identified. It was found that β-casein was degraded primarily by plasmin and αs1 -casein by chymosin. Initial chymosin and plasmin cleavage sites in αs1-, and β-casein, respectively, identified in these and other studies corresponded to the peptides isolated from cheese. The importance of non-starter lactic acid bacteria (NSLAB) to the maturation of Cheddar was studied in cheeses manufactured from raw, pasteurized or microfiltered milks. NSLAB were found to strongly influence the quality and patterns of proteolysis. Results presented in this thesis are consistent with the hypothesis that primary proteolysis in Cheddar is catalysed primarily by the action of chymosin and plasmin on intact αs1- and β-caseins, respectively. The resulting large peptides so produced are subsequently degraded by these enzymes and by proteinases and peptidases from the starter and NSLAB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lactococcus lactis is used extensively world-wide for the production of fermented dairy products. Bacteriophages (phages) infecting L. lactis can result in slow or incomplete fermentations, or may even cause total fermentation failure. Therefore, bacteriophages disrupting L. lactis fermentation are of economic concern. This thesis employed a multifaceted approach to investigate various molecular aspects of phage-host interaction in L. lactis. The genome sequence of an Irish dairy starter strain, the prophage-cured L. lactis subsp. cremoris UC509.9, was studied. The 2,250,427 bp circular chromosome represents the smallest among its sequenced lactococcal equivalents. The genome displays clear genetic adaptation to the dairy niche in the form of extensive reductive evolution. Gene prediction identified 2066 protein-encoding genes, including 104 which showed significant homology to transposase-specifying genes. Over 9 % of the identified genes appear to be inactivated through stop codons or frame shift mutations. Many pseudogenes were found in genes that are assigned to carbohydrate and amino acid transport and metabolism orthologous groups, reflecting L. lactis UC509.9’s adaptation to the lactose and casein-rich dairy environment. Sequence analysis of the eight plasmids of L. lactis revealed extensive adaptation to the dairy environment. Key industrial phenotypes were mapped and novel lactococcal plasmid-associated genes highlighted. In addition to chromosomally-encoded bacteriophage resistance systems, six functional such systems were identified, including two abortive infection systems, AbiB and AbiD1, explaining the observed phage resistance of L. lactis UC509.9 Molecular analysis suggests that the constitutive expression of AbiB is not lethal to cells, suggesting the protein is expressed in an un/inactivated form. Analysis of 936 species phage sk1-escape mutants of AbiB revealed that all such mutants harbour mutations in orf6, which encodes the major capsid protein. Results suggest that the major capsid protein is required for activation of the AbiB system, although this requires furrther investigations. Temporal transcriptomes of L. lactis UC509.9 undergoing lytic infection with either one of two distinct bacteriophages, Tuc2009 and c2, was determined and compared to the transcriptome of uninfected UC509.9 cells. Whole genome microarrays performed at various time-points post-infection demonstrated a rather modest impact on host transcription. Alterations in the UC509.9 transcriptome during lytic infection appear phage-specific, with a relatively small number of differentially transcribed genes shared between infection with either Tuc2009 or c2. Transcriptional profiles of both bacteriophages during lytic infection was shown to generally correlate with previous studies and allowed the confirmation of previously predicted promoter sequences. Bioinformatic analysis of genomic regions encoding the presumed cell wall polysaccharide (CW PS) biosynthesis gene cluster of several strains of L. lactis was performed. Results demonstrate the presence of three dominant genetic types of this gene cluster, termed type A, B and C. These regions were used for the development of a multiplex PCR to identify CW PS genotype of various lactococcal strains. Analysis of 936 species phage receptor binding protein phylogeny (RBP) and CW PS genotype revealed an apparent correlation between RBP phylogeny and CW PS type, thereby providing a partial explanation for the observed narrow host range of 936 phages. Further analysis of the genetic locus encompassing the presumed CW PS biosynthesis operon of eight strains identified as belonging to the CW PS C (geno)type, revealed the presence of a variable region among the examined strains. The obtained comparative analysis allowed for the identification of five subgroups of the C type, named C1 to C5. We purified an acidic polysaccharide from the cell wall of L. lactis 3107 (C2 subtype) and confirmed that it is structurally different from the CW PS of the C1 subtype L. lactis MG1363. Combinations of genes from the variable region of C2 subtype were amplified from L. lactis 3107 and introduced into a mutant of the C1 subtype L. lactis NZ9000 (a direct derivative of MG1363) deficient in CW PS biosynthesis. The resulting recombinant mutant synthesized a CW PS with a composition characteristic for that of the C2 subtype L. lactis 3107 and not the wildtype C1 L. lactis NZ9000. The recombinant mutant exhibited a changed phage resistance/sensitivity profile consistent with that of L. lactis 3107, which unambiguously demonstrated that L. lactis 3107 CW PS is the host cell surface receptor of two bacteriophages belonging to the P335 species as well as phages that are member of the 936 species. The research presented in this thesis has significantly advanced our understanding of L. lactis bacteriophage-host interactions in several ways. Firstly, the examination of plasmidencoded bacteriophage resistance systems has allowed inferences to be made regarding the mode of action of AbiB, thereby providing a platform for further elucidation of the molecular trigger of this system. Secondly, the phage infection transcriptome data presented, in addition to previous work, has made L. lactis a model organism in terms of transcriptomic studies of bacteriophage-host interactions. And finally, the research described in this thesis has for the first time explicitly revealed the nature of a carbohydrate bacteriophage receptor in L. lactis, while also providing a logical explanation for the observed narrow host ranges exhibited by 936 and P335 phages. Future research in discerning the structures of other L. lactis CW PS, combined with the determination of the molecular interplay between receptor binding proteins of these phages and CW PS will allow an in depth understanding of the mechanism by which the most prevalent lactococcal phages identify and adsorb to their specific host.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial cell-wall-associated fibronectin binding proteins A and B (FnBPA and FnBPB) form bonds with host fibronectin. This binding reaction is often the initial step in prosthetic device infections. Atomic force microscopy was used to evaluate binding interactions between a fibronectin-coated probe and laboratory-derived Staphylococcus aureus that are (i) defective in both FnBPA and FnBPB (fnbA fnbB double mutant, DU5883), (ii) capable of expressing only FnBPA (fnbA fnbB double mutant complemented with pFNBA4), or (iii) capable of expressing only FnBPB (fnbA fnbB double mutant complemented with pFNBB4). These experiments were repeated using Lactococcus lactis constructs expressing fnbA and fnbB genes from S. aureus. A distinct force signature was observed for those bacteria that expressed FnBPA or FnBPB. Analysis of this force signature with the biomechanical wormlike chain model suggests that parallel bonds form between fibronectin and FnBPs on a bacterium. The strength and covalence of bonds were evaluated via nonlinear regression of force profiles. Binding events were more frequent (p < 0.01) for S. aureus expressing FnBPA or FnBPB than for the S. aureus double mutant. The binding force, frequency, and profile were similar between the FnBPA and FnBPB expressing strains of S. aureus. The absence of both FnBPs from the surface of S. aureus removed its ability to form a detectable bond with fibronectin. By contrast, ectopic expression of FnBPA or FnBPB on the surface of L. lactis conferred fibronectin binding characteristics similar to those of S. aureus. These measurements demonstrate that fibronectin-binding adhesins FnBPA and FnBPB are necessary and sufficient for the binding of S. aureus to prosthetic devices that are coated with host fibronectin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adipose-derived stem cells (ASCs) have the ability to release multiple growth factors in response to hypoxia. In this study, we investigated the potential of ASCs to prevent tissue ischemia. We found conditioned media from hypoxic ASCs had increased levels of vascular endothelial growth factor (VEGF) and enhanced endothelial cell tubule formation. To investigate the effect of injecting rat ASCs into ischemic flaps, 21 Lewis rats were divided into three groups: control, normal oxygen ASCs (10(6) cells), and hypoxic preconditioned ASCs (10(6) cells). At the time of flap elevation, the distal third of the flap was injected with the treatment group. At 7 days post flap elevation, flap viability was significantly improved with injection of hypoxic preconditioned ASCs. Cluster of differentiation-31-positive cells were more abundant along the margins of flaps injected with ASCs. Fluorescent labeled ASCs localized aside blood vessels or throughout the tissue, dependent on oxygen preconditioning status. Next, we evaluated the effect of hypoxic preconditioning on ASC migration and chemotaxis. Hypoxia did not affect ASC migration on scratch assay or chemotaxis to collagen and laminin. Thus, hypoxic preconditioning of injected ASCs improves flap viability likely through the effects of VEGF release. These effects are modest and represent the limitations of cellular and growth factor-induced angiogenesis in the acute setting of ischemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Outer membrane vesicles (OMVs) are ubiquitously secreted from the outer membrane (OM) of Gram-negative bacteria. These heterogeneous structures are composed of OM filled with periplasmic content from the site of budding. By analyzing mutants that have vesicle production phenotypes, we can gain insight into the mechanism of OMV budding in wild-type cells, which has thus far remained elusive. In this study, we present data demonstrating that the hypervesiculation phenotype of the nlpI deletion mutant of Escherichia coli correlates with changes in peptidoglycan (PG) dynamics. Our data indicate that in stationary phase cultures the nlpI mutant exhibits increased PG synthesis that is dependent on spr, consistent with a model in which NlpI controls the activity of the PG endopeptidase Spr. In log phase, the nlpI mutation was suppressed by a dacB mutation, suggesting that NlpI regulates penicillin-binding protein 4 (PBP4) during exponential growth. The data support a model in which NlpI negatively regulates PBP4 activity during log phase, and Spr activity during stationary phase, and that in the absence of NlpI, the cell survives by increasing PG synthesis. Further, the nlpI mutant exhibited a significant decrease in covalent outer membrane (OM-PG) envelope stabilizing cross-links, consistent with its high level of OMV production. Based on these results, we propose that one mechanism wild-type Gram-negative bacteria can use to modulate vesiculation is by altering PG-OM cross-linking via localized modulation of PG degradation and synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conditions that impair protein folding in the Gram-negative bacterial envelope cause stress. The destabilizing effects of stress in this compartment are recognized and countered by a number of signal transduction mechanisms. Data presented here reveal another facet of the complex bacterial stress response, release of outer membrane vesicles. Native vesicles are composed of outer membrane and periplasmic material, and they are released from the bacterial surface without loss of membrane integrity. Here we demonstrate that the quantity of vesicle release correlates directly with the level of protein accumulation in the cell envelope. Accumulation of material occurs under stress, and is exacerbated upon impairment of the normal housekeeping and stress-responsive mechanisms of the cell. Mutations that cause increased vesiculation enhance bacterial survival upon challenge with stressing agents or accumulation of toxic misfolded proteins. Preferential packaging of a misfolded protein mimic into vesicles for removal indicates that the vesiculation process can act to selectively eliminate unwanted material. Our results demonstrate that production of bacterial outer membrane vesicles is a fully independent, general envelope stress response. In addition to identifying a novel mechanism for alleviating stress, this work provides physiological relevance for vesicle production as a protective mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fuel-only algal systems are not economically feasible because yields are too low and costs too high for producing microalgal biomass compared to using agricultural residues e.g. straw. Biorefineries which integrate biomass conversion processes and equipment to produce fuels, power and chemicals from biomass, offer a solution. The CO2 microalgae biorefinery (D-Factory) is a 10 million Euro FP7-funded project which will cultivate the microalga Dunaliella in highly saline non-potable waters in photobioreactors and open raceways and apply biorefinery concepts and European innovations in biomass processing technologies to develop a basket of compounds from Dunaliella biomass, including the high value nutraceutical, β-carotene, and glycerol. Glycerol now finds markets both as a green chemical intermediate and as a biofuel in CHP applications as a result of novel combustion technology. Driving down costs by recovering the entire biomass of Dunaliella cells from saline cultivation water poses one of the many challenges for the D-Factory because Dunaliella cells are both motile, and do not possess an external cell wall, making them highly susceptible to cell rupture. Controlling expression of desired metabolic pathways to deliver the desired portfolio of compounds flexibly and sustainably to meet market demand is another. The first prototype D-Factory in Europe will be operational in 48 months, and will serve as a robust manifestation of the business case for global investment in algae biorefineries and in large-scale production of microalgae.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic John T. Allen1,2, Louise Brown1,3, Richard Sanders1, C. Mark Moore1, Alexander Mustard1, Sophie Fielding1, Mike Lucas1, Michel Rixen4, Graham Savidge5, Stephanie Henson1 and Dan Mayor1 Top of pageDiatoms are unicellular or chain-forming phytoplankton that use silicon (Si) in cell wall construction. Their survival during periods of apparent nutrient exhaustion enhances carbon sequestration in frontal regions of the northern North Atlantic. These regions may therefore have a more important role in the 'biological pump' than they have previously been attributed1, but how this is achieved is unknown. Diatom growth depends on silicate availability, in addition to nitrate and phosphate2, 3, but northern Atlantic waters are richer in nitrate than silicate4. Following the spring stratification, diatoms are the first phytoplankton to bloom2, 5. Once silicate is exhausted, diatom blooms subside in a major export event6, 7. Here we show that, with nitrate still available for new production, the diatom bloom is prolonged where there is a periodic supply of new silicate: specifically, diatoms thrive by 'mining' deep-water silicate brought to the surface by an unstable ocean front. The mechanism we present here is not limited to silicate fertilization; similar mechanisms could support nitrate-, phosphate- or iron-limited frontal regions in oceans elsewhere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reviews some practical aspects of the application of algal biomass for the biosorption of heavy metals from wastewater. The ability of different algal species to remove metals varies with algal group and morphology, with the speciation of specific metals and their competition with others in wastewater, and with environmental or process factors. The scattered literature on the uptake of heavy metals by both living and dead algal biomass - both macroalgae and immobilized microalgae - has been reviewed, and the uptake capacity and efficiency of different species, as well as what is known about the mechanisms of biosorption, are presented. Data on metal uptake have commonly been fitted to equilibrium models, such as the Langmuir and Freundlich isotherm models, and the parameters of these models permit the uptake capacity of different algal species under different process conditions to be compared. Higher uptake capacities have been found for brown algae than for red and green algae. Kelps and fucoids are the most important groups of algae used for biosorption of heavy metals, probably because of their abundant cell wall polysacchrides and extracellular polymers. Another important practical aspect is the possibility of re-using algal biomass in several adsorption/desorption cycles (up to 10 have been used with Sargassum spp), and the influence of morphology and environmental conditions on the re-usability of algal tissue is also considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermogravimetry (TG) can be used for assessing the compositional differences in grasses that relate to dry matter digestibility (DMD) determined by pepsin-cellulase assay. This investigation developed regression models for predicting DMD of herbage grass during one growing season using TG results. The calibration samples were obtained from a field trial of eight cultivars and two breeding lines. The harvested materials from five cuts were analysed by TG to identify differences in the combustion patterns within the range of 30-600 degrees C. The discrete results including weight loss, peak height, area, temperature, widths and residue of three decomposition peaks were regressed against the measured DMD values of the calibration samples. Similarly, continuous weight loss results of the same samples were also utilised to generate DMD models. The r(2) for validation of the discrete and the best continuous models were 0.90 and 0.95, respectively, and the two calibrations were validated using independent samples from 24 plots from a trial carried out in 2004. The standard error for prediction of the 24 samples by the discrete model (4.14%) was higher than that by the continuous model (2.98%). This study has shown that DMD of grass could be predicted from the TG results. The benefit of thermal analysis is the ability to detect and show changes in composition of cell wall fractions of grasses during different cuts in a year.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall-degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.