997 resultados para catalytic oxidation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we have studied cyclooctene epoxidation with PhIO, using a new iron porphyrin, 5,10,15,20-tetrakis(2-hydroxy-5-nitrophenyl)porphyrinato iron(III), supported on silica matrices via eletrostatic interaction and / or covalent bonds as catalyst. These catalysts were obtained and immobilized on the solid supports propyltrimethylammonium silica (SiN+); propyltrimethylammonium and propylimidazole silica [SiN+(IPG)] and chloropropylsilica (CPS) via elestrostatic interactions and covalent binding. Characterization of the supported catalysts by UV-Vis spectroscopy and EPR (Electron paramagnetic resonance) indicated the presence of a mixture of FeII and FeIII species in all of the three obtained catalysts. In the case of (Z)-cyclooctene epoxidation by PhIO the yields observed for cis-epoxycyclooctane were satisfactory for the reactions catalyzed by the three materials (ranging from 68% to 85%). Such results indicate that immobilization of metalloporphyrins onto solid supports via groups localized on the ortho positions of their mesophenyl rings can lead to efficient catalysts for epoxidation reactions. The catalyst 1-CPS is less active than 1-SiN and 1-SiN(IPG), this argues in favour of the immobilization of this metalloporphyrin onto solids via electrostatic interactions, which is easier to achieve and results in more active oxidation catalysts. Interestingly, the activity of the supported catalysts remained the same even after three successive recyclings; therefore, they are stable under the oxidizing conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol oxidation has been studied on stepped platinum single crystal electrodes in acid media using electrochemical and Fourier transform infrared (FTIR) techniques. The electrodes used belong to two different series of stepped surfaces: those having (111) terraces with (100) monoatomic steps and those with (111) terraces with (110) monoatomic steps. The behaviors of the two series of stepped surfaces for the oxidation of ethanol are very different. On the one hand, the presence of (100) steps on the (111) terraces provides no significant enhancement of the activity of the surfaces. On the other hand, (110) steps have a double effect on the ethanol oxidation reaction. At potentials below 0.7 V, the step catalyzes the C-C bond cleavage and also the oxidation of the adsorbed CO species formed. At higher potentials, the step is not only able to break the C-C bond, but also to catalyze the oxidation of ethanol to acetic acid and acetaldehyde. The highest catalytic activity from voltammetry for ethanol oxidation was obtained with the Pt(554) electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol oxidation has been studied on Pt(111), Pt(100) and Pt(110) electrodes in order to investigate the effect of the surface structure and adsorbing anions using electrochemical and FTIR techniques. The results indicate that the surface structure and anion adsorption affect significantly the reactivity of the electrode. Thus, the main product of the oxidation of ethanol on the Pt(111) electrode is acetic acid, and acetaldehyde is formed as secondary product. Moreover, the amount of CO formed is very small, and probably associated with the defects present on the electrode surface. For that reason, the amount of CO(2) is also small. This electrode has the highest catalytic activity for the formation of acetic acid in perchloric acid. However, the formation of acetic acid is inhibited by the presence of specifically adsorbed anions, such as (bi) sulfate or acetate, which is the result of the formation of acetic acid. On the other hand, CO is readily formed at low potentials on the Pt(100) electrode, blocking completely the surface. Between 0.65 and 0.80 V, the CO layer is oxidized and the production of acetaldehyde and acetic acid is detected. The Pt(110) electrode displays the highest catalytic activity for the splitting of the C-C bond. Reactions giving rise to CO formation, from either ethanol or acetaldehyde, occur at high rate at any potential. On the other hand, the oxidation of acetaldehyde to acetic acid has probably the lower reaction rate of the three basal planes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the fact that the majority of the catalytic electro-oxidation of small organic molecules presents oscillatory kinetics under certain conditions, there are few systematic studies concerning the influence of experimental parameters on the oscillatory dynamics. Of the studies available, most are devoted to C1 molecules and just some scattered data are available for C2 molecules. We present in this work a comprehensive study of the electro-oxidation of ethylene glycol on polycrystalline platinum surfaces and in alkaline media. The system was studied by means of electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry, and the impact of parameters such as applied current, ethylene glycol concentration, and temperature were investigated. As in the case of other parent systems, the instabilities in this system were associated with a hidden negative differential resistance, as identified by impedance data. Very rich and robust dynamics were observed, including the presence of harmonic and mixed mode oscillations and chaotic states, in some parameter region. Oscillation frequencies of about 16 Hz characterized the fastest oscillations ever reported for the electro-oxidation of small organic molecules. Those high frequencies were strongly influenced by the electrolyte pH and far less affected by the EG concentration. The system was regularly dependent on temperature under voltammetric conditions but rather independent within the oscillatory regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic ozonation has been recognized in the scientific community as an efficient technique, reaching elevated rates of recalcitrant organic material mineralization, even at the presence of scavenger species of hydroxyl free radicals. This study presents the most significant factors involving the leachate treatment stabilized by the municipal landfill of the city of Guaratingueta, State of Sao Paulo, Brazil, by using a catalytic ozonation activated by metallic ions Fe(3+), Zn(2+), Mn(2+), Ni(2+) and Cr(3+). The Taguchi L(16) orthogonal array and its associated statistical methods were also used in this study. Among the researched ions, the most notable catalysis was obtained with ferric ion, statistically significant in the reduction of COD with a confidence level of 99.5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic activities and deactivation characteristics of oxides-supported nickel catalysts for the reaction of methane reforming with carbon dioxide were investigated. The dynamic carbon deposition on various nickel catalysts was also studied by a thermogravimetric method. Among the catalysts prepared, Ni/La2O3, Ni/alpha-Al2O3, Ni/SiO2, and Ni/CeO2 showed very high CH4 and CO2 conversions and moderate deactivation whereas Ni/MgO and Ni/TiO2 had lower conversions when the Ni reduction was conducted at 500 degrees C. When Ni/MgO catalyst was reduced at 800 degrees C, it exhibited not only comparable conversions of CH4 and CO2 with other active catalysts but also much longer period of stability without deactivation. The amount of carbon deposited in Ni-based catalysts varied depending on the nature of support and followed the order of Ni/La2O3 > Ni/alpha-Al2O3 > Ni/SiO2 > Ni/MgO > Ni/CeO2 at 700 degrees C. The carbons formed on the catalyst surface showed different structural and chemical properties, and these in turn affected the catalytic activity of the catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic conversion of N2O to N-2 With potassium catalysts supported on activated carbon (K/AC) was investigated. Potassium proves to be much more active and stable than either copper or cobalt because potassium possesses strong abilities both for N2O chemisorption and oxygen transfer. Potassium redispersion is found to play a critical role in influencing the catalyst stability. A detailed study of the reaction mechanism was conducted based upon three different catalyst loadings. It was found that during temperature-programmed reaction (TPR), the negative oxygen balance at low temperatures (< 50 degrees C) is due to the oxidation of the external surface of potassium oxide particles, while the bulk oxidation accounts for the oxygen accumulation at higher temperatures (below ca. 270 degrees C). N2O is beneficial for the removal of carbon-oxygen complexes because of the formation of CO2 instead of CO and because of its role in making the chemisorption of produced CO2 on potassium oxide particles less stable. A conceptual three-zone model was proposed to clarify the reaction mechanism over K/AC catalysts. CO2 chemisorption at 250 degrees C proves to be an effective measurement of potassium dispersion. (C) 1999 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic reforming of methane with carbon dioxide was studied in a fixed-bed reactor using unpromoted and promoted Ni/gamma-Al2O3 catalysts. The effects of promoters, such as alkali metal oxide (Na2O), alkaline-earth metal oxides (MgO, CaO) and rare-earth metal oxides (La2O3, CeO2), on the catalytic activity and stability in terms of coking resistance and coke reactivity were systematically examined. CaO-, La2O3- and CeO2-promoted Ni/gamma-Al2O3 catalysts exhibited higher stability whereas MgO- and Na2O-promoted catalysts demonstrated lower activity and significant deactivation. Metal-oxide promoters (Na2O, MgO, La2O3, and CeO2) suppressed the carbon deposition, primarily due to the enhanced basicities of the supports and highly reactive carbon species formed during the reaction. In contrast, CaO increased the carbon deposition; however, it promoted the carbon reactivity. (C) 2000 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A heterogeneous copper catalyst supported on mesoporous MCM-41 was developed. The parent MCM-41 has a large pore area of over 1400 m(2)/g. Copper was chosen as the active element of catalyst and loaded into MCM-41 by adsorption at ambient temperature. The prepared catalysts were evaluated in the catalytic wet oxidation of phenol solution with an initial concentration of 1,300 ppm at 150 and 200 degreesC. The catalyst was found to be of high catalytic activity. It is also shown that the catalyst with a higher copper loading exhibits higher ability of accelerating the catalytic reaction to certain extent but reaches its constant level afterwards. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal oxide pillared clay (PILC) possesses several interesting properties, such as large surface area, high pore volume and tunable pore size (from micropore to mesopore), high thermal stability, strong surface acidity and catalytic active substrates/metal oxide pillars. These unique characteristics make PILC an attractive material in catalytic reactions. It can be made either as catalyst support or directly used as catalyst. This paper is a continuous work from Kloprogge's review (J.T. Kloprogge, J. Porous Mater. 5, 5 1998) on the synthesis and properties of smectites and related PILCs and will focus on the diverse applications of clay pillared with different types of metal oxides in the heterogeneous catalysis area and adsorption area. The relation between the performance of the PILC and its physico-chemical features will be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various mesoporous catalysts with titanium loadings between 0.5 and 4 Ti wt. % and surface areas between 600 and 1,600 m(2)/g were synthesized using the molecular designed dispersion technique. These catalysts were tested using toluene oxidation in a fixed bed reactor at temperatures between 300 and 550degreesC. The reaction products were found to be CO2 and CO with selectivity towards CO2 above 80% for all catalysts. The catalytic activity of the catalysts increases with titanium loading. The total conversion at 550degreesC was not affected by the textural porosity, but increased textural porosity did significantly reduce the ignition temperature by up to 50degreesC. The Thiele modulus was calculated to be much less than one for all these materials indicating that the reaction rate is not diffusion, limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primidone (PRM) oxidation by various oxidants such as iodosylbenzene (PhIO), tert-butyl hydroperoxide 70wt.% (t-BOOH), 3-chloroperoxybenzoic acid (m-CPBA) and hydrogen peroxide 30wt.%, mediated by either a salen complex or metalloporphyrins, was investigated. The catalytic systems led to phenylethyl-malondiamide (PEMA) and phenobarbital (FEND), the same metabolites obtained in vivo with P450 enzymes, although three other products were also detected. Product formation was highly dependent on the oxidant, co-catalyst (imidazole), pH and dioxygen. These biomimetic chemical models have potential application in the synthesis of drug metabolites. which should provide samples for pharmacological tests. They can also be employed in studies that pursue the elucidation of in vivo drug metabolism. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the catalytic activity of manganese and iron porphyrins, Mn and Fe(TFPP)Cl, covalently immobilized on the aminofunctionalized supports montmorillonite K-10 (MontX) and silica (SilX), where X= 1 or 2 represents the length of the organic chain (""arms"") binding the metalloporphyrin to the support. These systems were characterized by UV-vis and Electronic Paramagnetic Resonance (EPR), and they were used as catalysts in the oxidation of carbamazepine (CBZ) by the oxidants iodosylbenzene (PhIO) and hydrogen peroxide. The manganese porphyrin (MnP) catalysts proved to be efficient and selective for the epoxide, the main CBZ metabolite in natural systems. MnMont1 was an excellent catalyst when PhIO was used as oxidant, even better than the same MnP in homogeneous system. Supports bearing short ""arms"" led to the best yields. Although H2O2 is an environmentally friendly oxidant, low product yields were obtained when it was employed in CBZ oxidation. Fe(TFPP)CI immobilized on aminofunctionalized supports was not an efficient catalyst, probably due to the presence of Fe(H) species in the matrix, which led to the less reactive intermediate PFe(IV)(O). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The commercially available Jacobsen catalyst, Mn(salen), was occluded in hybrid polymeric membranes based on poly(dimethylsiloxane) (PDMS) and poly(vinyl alcohol) (PVA). The obtained systems were characterized by UV-vis spectroscopy and SEM techniques. The membranes were used as a catalytic barrier between two different phases: an organic substrate phase (cyclooctene or styrene) in the absence of solvent, and an aqueous solution of either t-BuOOH or H(2)O(2). Membranes containing different percentages of PVA were prepared, in order to modulate their hydrophilic/hydrophobic swelling properties. The occluded complex proved to be an efficient catalyst for the oxidation of alkenes. The new triphasic system containing a cheap and easily available catalyst allowed substrate oxidation and easy product separation using ""green"" oxidants. (C) 2010 Elsevier B.V. All rights reserved.