881 resultados para cardiac arrhythmia
Resumo:
A mathematical model is presented to understand heat transfer processes during the cooling and re-warming of patients during cardiac surgery. Our compartmental model is able to account for many of the qualitative features observed in the cooling of various regions of the body including the central core containing the majority of organs, the rectal region containing the intestines and the outer peripheral region of skin and muscle. In particular, we focus on the issue of afterdrop: a drop in core temperature following patient re-warming, which can lead to serious post-operative complications. Model results for a typical cooling and re-warming procedure during surgery are in qualitative agreement with experimental data in producing the afterdrop effect and the observed dynamical variation in temperature between the core, rectal and peripheral regions. The influence of heat transfer processes and the volume of each compartmental region on the afterdrop effect is discussed. We find that excess fat on the peripheral and rectal regions leads to an increase in the afterdrop effect. Our model predicts that, by allowing constant re-warming after the core temperature has been raised, the afterdrop effect will be reduced.
Resumo:
Growth of the post- natal mammalian heart occurs primarily by cardiac myocyte hypertrophy. Previously, we and others have shown that a partial re- activation of the cell cycle machinery occurs in myocytes undergoing hypertrophy such that cells progress through the G(1)/ S transition. In this study, we have examined the regulation of the E2F family of transcription factors that are crucial for the G(1)/ S phase transition during normal cardiac development and the development of myocyte hypertrophy in the rat. Thus, mRNA and protein levels of E2F- 1, 3, and 4 and DP- 1 and DP- 2 were down- regulated during development to undetectable levels in adult myocytes. Interestingly, E2F- 5 protein levels were substantially up- regulated during development. In contrast, an induction of E2F- 1, 3, and 4 and the DP- 1 protein was observed during the development of myocyte hypertrophy in neonatal myocytes treated with serum or phenylephrine, whereas the protein levels of E2F- 5 were decreased with serum stimulation. E2F activity, as measured by a cyclin E promoter luciferase assay and E2F- DNA binding activity, increased significantly during the development of hypertrophy with serum and phenylephrine compared with non- stimulated cells. Inhibiting E2F activity with a specific peptide that blocks E2F- DP heterodimerization prevented the induction of hypertrophic markers ( atrial natriuretic factor and brain natriuretic peptide) in response to serum and phenylephrine, reduced the increase in myocyte size, and inhibited protein synthesis in stimulated cells. Thus, we have shown that the inhibition of E2F function prevents the development of hypertrophy. Targeting E2F function might be a useful approach for treating diseases that cause pathophysiological hypertrophic growth.
Resumo:
Previous studies have shown that "Mudanpi", a Chinese herbal medicine, has a significant cardioprotective effect against myocardial ischaemia. Based on these findings we hypothesised that paeonol, the main component of Mudanpi, might have an effect on the cellular electrophysiology of cardiac ventricular myocytes. The effects of paeonol on the action potential and ion channels of cardiac ventricular myocytes were studied using the standard whole-cell configuration of the patch-clamp technique. Ventricular myocytes were isolated from the hearts of adult guinea-pig by enzymic dispersion. The myocytes were continuously perfused with various experimental solutions at room temperature and paeonol applied in the perfusate. Action potentials and membrane currents were recorded using both current and voltage clamp modes of the patch-clamp technique. Paeonol, at concentrations 160 mu M and 640 mu M, decreased the action potential upstroke phase, an action associated with the blockade of the voltage-gated, fast sodium channel. The effects of paeonol on both action potential and Na+ current were concentration dependent. Paeonol had a high affinity for inactivated sodium channels. Paeonol also shortened the action potential duration, in a manner not associated with the blockade of the calcium current, or the enhancement of potassium currents. These findings suggest that paeonol, and therefore Mudanpi, may possess antiarrhythmic activity, which may confer its cardioprotective effects. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
The precise role of cell cycle-dependent molecules in controlling the switch from cardiac myocyte hyperplasia to hypertrophy remains to be determined. We report that loss of p27(KIP1) in the mouse results in a significant increase in heart size and in the total number of cardiac myocytes. In comparison to p27(KIP1)+/+ myocytes, the percentage of neonatal p27(KIP1)-/- myocytes in S phase was increased significantly, concomitant with a significant decrease in the percentage of G(0)/G(1) cells. The expressions of proliferating cell nuclear antigen, G(1)/S and G(2)/M phase-acting cyclins, and cyclin-dependent kinases (CDKs) were upregulated significantly in ventricular tissue obtained from early neonatal p27(KIP1)-/- mice, concomitant with a substantial decrease in the expressions of G(1) phase-acting cyclins and CDKs. Furthermore, mRNA expressions of the embryonic genes atrial natriuretic factor and alpha-skeletal actin were detectable at significant levels in neonatal and adult p27(KIP1)-/- mouse hearts but were undetectable in p27(KIP1)+/+ hearts. In addition, loss of p27(KIP1) was not compensated for by the upregulation of other CDK inhibitors. Thus, the loss of p27(KIP1) results in prolonged proliferation of the mouse cardiac myocyte and perturbation of myocyte hypertrophy.
Resumo:
Transforming growth factor-β (TGF-β) is synthesised as an inactive precursor protein; this is cleaved to produce the mature peptide and a latency associated protein (LAP), which remains associated with the mature peptide until activation by LAP degradation. Isoform specific antibodies raised against the LAPs for TGF-β2and -β3were used to determine the myocardial levels of LAP (activatable TGF-β) and full length precursor (inactive TGF-β) forms during post-natal development in the rat. TGF-β2was present predominantly as the precursor in 2 day old myocardium. There was an age-dependent shift from precursor protein to LAP between 2 and 28 days. A corresponding increase in the level of mature (activatable) TGF-β2was found. TGF-β3was detected in significant quantities only as LAP. However, a four-fold increase in the expression of TGF-β3LAP was observed between 2 and 28 days. The substantial increases in activatable forms of TGF-β2and -β3that occur in myocardium during the first 28 days of life in the rat support a role for these proteins in post-natal cardiac development.
Resumo:
We examined Na+–H+exchanger isoform 1 (NHE-1) mRNA expression in ventricular myocardium and its correlation with sarcolemmal NHE activity in isolated ventricular myocytes, during postnatal development in the rat. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA did not change in ventricular myocardium between 2 and 42 days after birth. Therefore, at seven time points within that age range, GAPDH expression was used to normalize NHE-1 mRNA levels, as determined by reverse transcription polymerase chain reaction analysis. There was a progressive five-fold reduction in NHE-1 mRNA expression in ventricular myocardium from 2 days to 42 days of age. As an index of NHE activity, acid efflux rates (JH) were determined in single neonatal (2–4-day-old) and adult (42-day-old) ventricular myocytes (n=16/group) loaded with the pH fluoroprobe carboxy-seminaphthorhodafluor-1. In HEPES-buffered medium, basal intracellular pH (pHi) was similar at 7.28±0.02 in neonatal and 7.31±0.02 in adult myocytes, but intrinsic buffering power was lower in the former age group. The rate at which pHirecovered from a similar acid load was significantly greater in neonatal than in adult myocytes (0.36±0.07v0.16±0.02 pH units/min at pHi=6.8). This was reflected by a significantly greaterJH(22±4v9±1 pmol/cm2/s at pHi=6.8), indicating greater sarcolemmal NHE activity in neonatal myocytes. The concomitant reductions in tissue NHE-1 mRNA expression and sarcolemmal NHE activity suggest that myocardial NHE-1 is subject to regulation at the mRNA level during postnatal development.
Arresting developments in the cardiac myocyte cell cycle: Role of cyclin-dependent kinase inhibitors
Resumo:
Like most other cells in the body, foetal and neonatal cardiac myocytes are able to divide and proliferate. However, the ability of these cells to undergo cell division decreases progressively during development such that adult myocytes are unable to divide. A major problem arising from this inability of adult cardiac myocytes to proliferate is that the mature heart is unable to regenerate new myocardial tissue following severe injury, e.g. infarction, which can lead to compromised cardiac pump function and even death. Studies in proliferating cells have identified a group of genes and proteins that controls cell division. These proteins include cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDKIs), which interact with each other to form complexes that are essential for controlling normal cell cycle progression. A variety of other proteins, e.g. the retinoblastoma protein (pRb) and members of the E2F family of transcription factors, also can interact with, and modulate the activities of, these complexes. Despite the major role that these proteins play in other cell types, little was known until recently about their existence and activities in immature (proliferating) or mature (non-proliferating) cardiac myocytes. The reason(s) why cardiac myocytes lose their ability to divide during development remains unknown, but if strategies were developed to understand the mechanisms underlying cardiac myocyte growth, it could open up new avenues for the treatment of cardiovascular disease. In this article, we shall review the function of the cell cycle machinery and outline some of our recent findings pertaining to the involvement of the cell cycle in modulating cardiac myocyte growth and hypertrophy.
Resumo:
The related inflammatory cytokines, interleukin- (IL-) 1β and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1β or IL-33 with or without pre-exposure to endothelin-1 (5 h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1β. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1β, H2O2 or tumour necrosis factor α (TNFα) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1β and decreased the duration of expression of TNFα mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.
Resumo:
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Resumo:
The Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus. We demonstrate that Mdm2 transcript and protein expression are induced by oxidative stress (0.2 mm H(2)O(2)) in neonatal rat cardiac myocytes. In other cells, constitutive Mdm2 expression is regulated by the P1 promoter (5' to exon 1), with inducible expression regulated by the P2 promoter (in intron 1). In myocytes, H(2)O(2) increased Mdm2 expression from the P2 promoter, which contains two p53-response elements (REs), one AP-1 RE, and two Ets REs. H(2)O(2) did not detectably increase expression of p53 mRNA or protein but did increase expression of several AP-1 transcription factors. H(2)O(2) increased binding of AP-1 proteins (c-Jun, JunB, JunD, c-Fos, FosB, and Fra-1) to an Mdm2 AP-1 oligodeoxynucleotide probe, and chromatin immunoprecipitation assays showed it increased binding of c-Jun or JunB to the P2 AP-1 RE. Finally, antisense oligonucleotide-mediated reduction of H(2)O(2)-induced Mdm2 expression increased caspase 3 activation. Thus, increased Mdm2 expression is associated with transactivation at the P2 AP-1 RE (rather than the p53 or Ets REs), and Mdm2 induction potentially represents a cardioprotective response to oxidative stress.
Resumo:
ERK1 and ERK2 (ERK1/2) are central to the regulation of cell division, growth and survival. They are activated by phosphorylation of the Thr- and the Tyr- residues in their Thr-Glu-Tyr activation loops. The dogma is that dually-phosphorylated ERK1/2 constitute the principal activities in intact cells. We previously showed that, in neonatal rat cardiac myocytes, endothelin-1 and phorbol 12-myristate 13-acetate (PMA) powerfully and rapidly (maximal at ~ 5 min) activate ERK1/2. Here, we show that dually-phosphorylated ERK1/2 rapidly (< 2 min) appear in the nucleus following stimulation with endothelin-1. We characterized the active ERK1/2 species in myocytes exposed to endothelin-1 or PMA using MonoQ FPLC. Unexpectedly, two peaks of ERK1 and two peaks of ERK2 activity were resolved using in vitro kinase assays. One of each of these represented the dually-phosphorylated species. The other two represented activities for ERK1 or ERK2 which were phosphorylated solely on the Thr- residue. Monophosphothreonyl ERK1/2 represented maximally ~ 30% of total ERK1/2 activity after stimulation with endothelin-1 or PMA, and their kcat values were estimated to be minimally ~ 30% of the dually-phosphorylated species. Appearance of monophosphothreonyl ERK1/2 was rapid but delayed in comparison with dually-phosphorylated ERK1/2. Of 10 agonists studied, endothelin-1 and PMA were most effective in terms of ERK1/2 activation and in stimulating the appearance of monophosphothreonyl and dually-phosphorylated ERK1/2. Thus, enzymically active monophosphothreonyl ERK1/2 are formed endogenously following activation of the ERK1/2 cascade and we suggest that monophosphothreonyl ERK1/2 arise by protein tyrosine phosphatase-mediated dephosphorylation of dually-phosphorylated ERK1/2.
Resumo:
The nuclear Dbf2-related protein kinases 1 and 2 (NDR1/2) are closely-related AGC family kinases that are strongly conserved through evolution. In mammals, they are activated inter alia by phosphorylation of an hydrophobic domain threonine-residue [NDR1(Thr-444)/NDR2(Thr-442)] by an extrinsic protein kinase followed by autophosphorylation of a catalytic domain serine-residue [NDR1(Ser-281)/NDR2(Ser-282)]. We examined NDR1/2 expression and regulation in primary cultures of neonatal rat cardiac myocytes and in perfused adult rat hearts. In myocytes, transcripts for NDR2, but not NDR1, were induced by the hypertrophic agonist, endothelin-1. NDR1(Thr-444) and NDR2(Thr-442) were rapidly phosphorylated (maximal in 15-30 min) in myocytes exposed to some phosphoprotein Ser-/Thr-phosphatase 1/2 inhibitors (calyculin A, okadaic acid) and, to a lesser extent, by hyperosmotic shock, low concentrations of H(2)O(2), or chelerythrine. In myocytes adenovirally-transduced to express FLAG-NDR2 (which exhibited a mainly-cytoplasmic localisation), the same agents increased FLAG-NDR2 activity as assessed by in vitro protein kinase assays, indicative of FLAG-NDR2(Ser-282/Thr-442) phosphorylation. Calyculin A-induced phosphorylation of NDR1(Thr-444)/NDR2(Thr-442) and activation of FLAG-NDR2 were inhibited by staurosporine, but not by other protein kinase inhibitors tested. In ex vivo rat hearts, NDR1(Thr-444)/NDR2(Thr-442) were phosphorylated in response to ischaemia-reperfusion or calyculin A. From a pathological viewpoint, we conclude that activities of NDR1 and NDR2 are responsive to cytotoxic stresses in heart preparations and this may represent a previously-unidentified response to myocardial ischaemia in vivo.