850 resultados para building energy labelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demands in production and associate costs at power generation through non renewable resources are increasing at an alarming rate. Solar energy is one of the renewable resource that has the potential to minimize this increase. Utilization of solar energy have been concentrated mainly on heating application. The use of solar energy in cooling systems in building would benefit greatly achieving the goal of non-renewable energy minimization. The approaches of solar energy heating system research done by initiation such as University of Wisconsin at Madison and building heat flow model research conducted by Oklahoma State University can be used to develop and optimize solar cooling building system. The research uses two approaches to develop a Graphical User Interface (GUI) software for an integrated solar absorption cooling building model, which is capable of simulating and optimizing the absorption cooling system using solar energy as the main energy source to drive the cycle. The software was then put through a number of litmus test to verify its integrity. The litmus test was conducted on various building cooling system data sets of similar applications around the world. The output obtained from the software developed were identical with established experimental results from the data sets used. Software developed by other research are catered for advanced users. The software developed by this research is not only reliable in its code integrity but also through its integrated approach which is catered for new entry users. Hence, this dissertation aims to correctly model a complete building with the absorption cooling system in appropriate climate as a cost effective alternative to conventional vapor compression system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The realisation of molecular assemblies featuring specific macroscopic properties is a prime example for the versatility of supramolecular organisation. Microporous materials such as zeolite L are well suited for the preparation of host-guest composites containing dyes, complexes, or clusters. This short tutorial focuses on the possibilities offered by zeolite L to study and influence Förster resonance energy transfer inside of its nanochannels. The highly organised host-guest materials can in turn be structured on a larger scale to form macroscopic patterns, making it possible to create large-scale structures from small, highly organised building blocks for novel optical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA can serve as a versatile scaffold for chromophore assemblies. For example, light-harvesting antennae have been realized by incorporating phenanthrene and pyrene building blocks into DNA strands. It was shown that by exciting at 320 nm (absorption of phenanthrene), an emission at 450 nm is observed which corresponds to a phenanthrene-pyrene exciplex. The more phenanthrenes are added into the DNA duplex, the higher is the fluorescence intensity with no significant change in quantum yield. This shows that phenanthrene acts as a donor and efficiently transfers the excitation energy to the pyrene. Up to now, the mechanism of this energy transfer and exciplex formation is not known. Therefore, we first aim at studying the photo-cycle of such DNA assemblies through transient absorption spectroscopy. Based on the results, we will explore ways to manipulate the energy transfer by application of intense THz fields. Ground as well as excited state Stark effect dynamics will be investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictions about electric energy needs, based on current electric energy models, forecast that the global energy consumption on Earth for 2050 will double present rates. Using distributed procedures for control and integration, the expected needs can be halved. Therefore implementation of Smart Grids is necessary. Interaction between final consumers and utilities is a key factor of future Smart Grids. This interaction is aimed to reach efficient and responsible energy consumption. Energy Residential Gateways (ERG) are new in-building devices that will govern the communication between user and utility and will control electric loads. Utilities will offer new services empowering residential customers to lower their electric bill. Some of these services are Smart Metering, Demand Response and Dynamic Pricing. This paper presents a practical development of an ERG for residential buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The improvement of energy efficiency in existing buildings is always a challenge due to their particular, and sometimes protected, constructive solutions. New constructive regulations in Spain leave a big undefined gap when a restoration is considered because they were developed for new buildings. However, rehabilitation is considered as an opportunity for many properties because it allows owners to obtain benefits from the use of the buildings. The current financial and housing crisis has turned society point of view to existing buildings and making them more efficient is one of the Spanish government’s aims. The economic viability of a rehabilitation action should take all factors into account: both construction costs and the future operative costs of the building must be considered. Nevertheless, the application of these regulations in Spain is left to the designer’s opinion and always under a subjective point of view. With the research work described in this paper and with the help of some case-studies, the cost of adapting an existing building to the new constructive regulations will be studied and Energetic Efficiency will be evaluated depending on how the investment is recovered. The interest of the research is based on showing how new constructive solutions can achieve higher levels of efficiency in terms of energy, construction and economy and it will demonstrate that Life Cycle Costing analysis can be a mechanism to find the advantages and disadvantages of using these new constructive solutions. Therefore, this paper has the following objectives: analysing constructive solutions in existing buildings - to establish a process for assessing total life cycle costs (LCC) during the planning stages with consideration of future operating costs - to select the most advantageous operating system – To determine the return on investment in terms of construction costs based on new techniques, the achieved energy savings and investment payback periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2008, the City Council of Rivas-Vaciamadrid (Spain) decided to promote the construction of “Rivasecopolis”, a complex of sustainable buildings in which a new prototype of a zero-energy house would become the office of the Energy Agency. According to the initiative of the City Council, it was decided to recreate the dwelling prototype “Magic-box” which entered the 2005 Solar Decathlon Competition. The original project has been adapted to a new necessities programme, by adding the necessary spaces that allows it to work as an office. A team from university has designed and carried out the direction of the construction site. The new Solar House is conceived as a “testing building”. It is going to become the space for attending citizens in all questions about saving energy, energy efficiency and sustainable construction, having a permanent small exhibition space additional to the working places for the information purpose. At the same time, the building includes the use of experimental passive architecture systems and a monitoring and control system. Collected data will be sent to University to allow developing research work about the experimental strategies included in the building. This paper will describe and analyze the experience of transforming a prototype into a real durable building and the benefits for both university and citizens in learning about sustainability with the building

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relevance of renewable energy has grown significantly in our global society. Important efforts are oriented to sustain it. Renewable energy depends on different technical, financial environmental and social complex processes. From the point of view of industrial construction sector this research evaluates some of the current trends in energy generation and use in Venezuela as well as environmental consequences and risks that derive from these. Additionally, authors highlight the importance of infrastructure as key issue to sustain renewable energy generation and use. The study present references of some energy renewable projects in process in Venezuela and the main problems that constrain their performance. Conclusions evidence the complex nature of industrial construction and suggest the need to improve industrial construction competitivenes as a strategy oriented to enhance renewable energy offer in the country. Additionally it is proposed to all stakeholders to work toghether to correct the conditions that currently limit industrial construction development. This is part of ongoing research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PV Off-Grid systems have demonstrated to be a good solution for the electrification of remote areas [1]. A hybrid system is one kind of these systems. The principal characteristic is that it uses PV as the main generator and has a backup power supply, like a diesel generator, for instance, that is used when the CPV generation is not enough to meet demand. To study the use of CPV in these systems, ISFOC has installed a demonstration hybrid system at its headquarters. This hybrid system uses CPV technology as main generator and the utility grid as the backup generator. A group of batteries have been mounted as well to store the remaining energy from the CPV generator when nedeed. The energy flows are managed by a SMA system based on Sunny Island inverters and a Multicluster-Box (figure 1). The Load is the air-conditioning system of the building, as it has a consumption profile higher than the CPV generator and can be controlled by software [2]. The first results of this system, as well as the first chances of improvement, as the need of a bigger CPV generator and a better management of the energy stored in the batteries, are presented in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an Ontology-Based multi-technology platform as part of an open energy management system which also comprises a wireless transducer network for control and monitoring. The platform allows the integration of several building automation protocols, eases the development and implementation of different kinds of services and allows sharing of the data of a building. The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, the building sector alone accounts for 40% of the total energy consumption in the European Union (EU). In most EU member states, about 70–90% of the buildings were constructed at least 20 years ago. Due to this, these buildings have a worse energy efficiency behavior than the new ones that comply with current regulations. As a consequence, acting on the existing building stock is needed, developing special methods on assessment and advice in order to reduce the total energy consumption. This article addresses a procedure allowing the classification and characterization of existing buildings facades. It can help researchers to achieve in-depth knowledge of the facades construction and therefore knowing their thermal behavior. Once knowing that, the most appropriate upgrading strategies can be established with the purpose of reducing the energy demand. Furthermore, the classified facade typologies have been verified, complying with current and future Spanish regulations and according to the results obtained, a series of upgrading strategies based on the opaque part and those in the translucent part, have been proposed. As a conclusion, this procedure helps us to select the most appropriate improvement measures for each type of facade in order to comply with current and future Spanish regulations. This proposed method has been tested in a specific neighborhood of Madrid, in a selected period of time, between 1950 and 1980, but it could be applicable to any other city.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La hipótesis de esta tesis es: "La optimización de la ventana considerando simultáneamente aspectos energéticos y aspectos relativos a la calidad ambiental interior (confort higrotérmico, lumínico y acústico) es compatible, siempre que se conozcan y consideren las sinergias existentes entre ellos desde las primeras fases de diseño". En la actualidad se desconocen las implicaciones de muchas de las decisiones tomadas en torno a la ventana; para que su eficiencia en relación a todos los aspectos mencionados pueda hacerse efectiva es necesaria una herramienta que aporte más información de la actualmente disponible en el proceso de diseño, permitiendo así la optimización integral, en función de las circunstancias específicas de cada proyecto. En la fase inicial de esta investigación se realiza un primer acercamiento al tema, a través del estado del arte de la ventana; analizando la normativa existente, los componentes, las prestaciones, los elementos experimentales y la investigación. Se observa que, en ocasiones, altos requisitos de eficiencia energética pueden suponer una disminución de las prestaciones del sistema en relación con la calidad ambiental interior, por lo que surge el interés por integrar al análisis energético aspectos relativos a la calidad ambiental interior, como son las prestaciones lumínicas y acústicas y la renovación de aire. En este punto se detecta la necesidad de realizar un estudio integral que incorpore los distintos aspectos y evaluar las sinergias que se dan entre las distintas prestaciones que cumple la ventana. Además, del análisis de las soluciones innovadoras y experimentales se observa la dificultad de determinar en qué medida dichas soluciones son eficientes, ya que son soluciones complejas, no caracterizadas y que no están incorporadas en las metodologías de cálculo o en las bases de datos de los programas de simulación. Por lo tanto, se plantea una segunda necesidad, generar una metodología experimental para llevar a cabo la caracterización y el análisis de la eficiencia de sistemas innovadores. Para abordar esta doble necesidad se plantea la optimización mediante una evaluación del elemento acristalado que integre la eficiencia energética y la calidad ambiental interior, combinando la investigación teórica y la investigación experimental. En el ámbito teórico, se realizan simulaciones, cálculos y recopilación de información de distintas tipologías de hueco, en relación con cada prestación de forma independiente (acústica, iluminación, ventilación). A pesar de haber partido con un enfoque integrador, resulta difícil esa integración detectándose una carencia de herramientas disponible. En el ámbito experimental se desarrolla una metodología para la evaluación del rendimiento y de aspectos ambientales de aplicación a elementos innovadores de difícil valoración mediante la metodología teórica. Esta evaluación consiste en el análisis comparativo experimental entre el elemento innovador y un elemento estándar; para llevar a cabo este análisis se han diseñado dos espacios iguales, que denominamos módulos de experimentación, en los que se han incorporado los dos sistemas; estos espacios se han monitorizado, obteniéndose datos de consumo, temperatura, iluminancia y humedad relativa. Se ha realizado una medición durante un periodo de nueve meses y se han analizado y comparado los resultados, obteniendo así el comportamiento real del sistema. Tras el análisis teórico y el experimental, y como consecuencia de esa necesidad de integrar el conocimiento existente se propone una herramienta de evaluación integral del elemento acristalado. El desarrollo de esta herramienta se realiza en base al procedimiento de diagnóstico de calidad ambiental interior (CAI) de acuerdo con la norma UNE 171330 “Calidad ambiental en interiores”, incorporando el factor de eficiencia energética. De la primera parte del proceso, la parte teórica y el estado del arte, se obtendrán los parámetros que son determinantes y los valores de referencia de dichos parámetros. En base a los parámetros relevantes obtenidos se da forma a la herramienta, que consiste en un indicador de producto para ventanas que integra todos los factores analizados y que se desarrolla según la Norma UNE 21929 “Sostenibilidad en construcción de edificios. Indicadores de sostenibilidad”. ABSTRACT The hypothesis of this thesis is: "The optimization of windows considering energy and indoor environmental quality issues simultaneously (hydrothermal comfort, lighting comfort, and acoustic comfort) is compatible, provided that the synergies between these issues are known and considered from the early stages of design ". The implications of many of the decisions made on this item are currently unclear. So that savings can be made, an effective tool is needed to provide more information during the design process than the currently available, thus enabling optimization of the system according to the specific circumstances of each project. The initial phase deals with the study from an energy efficiency point of view, performing a qualitative and quantitative analysis of commercial, innovative and experimental windows. It is observed that sometimes, high-energy efficiency requirements may mean a reduction in the system's performance in relation to user comfort and health, that's why there is an interest in performing an integrated analysis of indoor environment aspects and energy efficiency. At this point a need for a comprehensive study incorporating the different aspects is detected, to evaluate the synergies that exist between the various benefits that meet the window. Moreover, from the analysis of experimental and innovative windows, a difficulty in establishing to what extent these solutions are efficient is observed; therefore, there is a need to generate a methodology for performing the analysis of the efficiency of the systems. Therefore, a second need arises, to generate an experimental methodology to perform characterization and analysis of the efficiency of innovative systems. To address this dual need, the optimization of windows by an integrated evaluation arises, considering energy efficiency and indoor environmental quality, combining theoretical and experimental research. In the theoretical field, simulations and calculations are performed; also information about the different aspects of indoor environment (acoustics, lighting, ventilation) is gathered independently. Despite having started with an integrative approach, this integration is difficult detecting lack available tools. In the experimental field, a methodology for evaluating energy efficiency and indoor environment quality is developed, to be implemented in innovative elements which are difficult to evaluate using a theoretical methodology This evaluation is an experimental comparative analysis between an innovative element and a standard element. To carry out this analysis, two equal spaces, called experimental cells, have been designed. These cells have been monitored, obtaining consumption, temperature, luminance and relative humidity data. Measurement has been performed during nine months and results have been analyzed and compared, obtaining results of actual system behavior. To advance this optimization, windows have been studied from the point of view of energy performance and performance in relation to user comfort and health: thermal comfort, acoustic comfort, lighting comfort and air quality; proposing the development of a methodology for an integrated analysis including energy efficiency and indoor environment quality. After theoretical and experimental analysis and as a result of the need to integrate existing knowledge, a comprehensive evaluation procedure for windows is proposed. This evaluation procedure is developed according to the UNE 171330 "Indoor Environmental Quality", also incorporating energy efficiency and cost as factors to evaluate. From the first part of the research process, outstanding parameters are chosen and reference values of these parameters are set. Finally, based on the parameters obtained, an indicator is proposed as windows product indicator. The indicator integrates all factors analyzed and is developed according to ISO 21929-1:2011"Sustainability in building construction. Sustainability indicators. Part 1: Framework for the development of indicators and a core set of indicators for buildings".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulating materials in buildings are one of the main factors that should be taken into account when talking about sustainability since with a correct application it could imply important savings for the citizens. In the course of its life, a building requires a series of supplies to perform the duties it has been built for, generating an impact on the environment. The selection of one material or another will establish partly the global environmental impact of the building. Choosing the right insulating material will determine the building's general degree of sustainability, both in its heating savings (energy consumption) and in the environmental impacts caused by its LCA (greenhouse gas emissions). Therefore, we propose to establish guidelines to characterize the insulating material with a better environmental performance in all the stages of its life cycle, taking into account the construction system, the use of the building and its location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many efforts have been made in order to adequate the production of a solar thermal collector field to the consumption of domestic hot water of the inhabitants of a building. In that sense, much has been achieved in different domains: research agencies, government policies and manufacturers. However, most of the design rules of the solar plants are based on steady state models, whereas solar irradiance, consumption and thermal accumulation are inherently transient processes. As a result of this lack of physical accuracy, thermal storage tanks are sometimes left to be as large as the designer decides without any aforementioned precise recommendation. This can be a problem if solar thermal systems are meant to be implemented in nowadays buildings, where there is a shortage of space. In addition to that, an excessive storage volume could not result more efficient in many residential applications, but costly, extreme in space consumption and in some cases too heavy. A proprietary transient simulation program has been developed and validated with a detailed measurement campaign in an experimental facility. In situ environmental data have been obtained through a whole year of operation. They have been gathered at intervals of 10 min for a solar plant of 50 m2 with a storage tank of 3 m3, including the equipment for domestic hot water production of a typical apartment building. This program has been used to obtain the design and dimensioning criteria of DHW solar plants under daily transient conditions throughout a year and more specifically the size of the storage tank for a multi storey apartment building. Comparison of the simulation results with the current Spanish regulation applicable, “Código Técnico de la Edificación” (CTE 2006), offers fruitful details and establishes solar facilities dimensioning criteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an Ontology-Based multi-technology platform designed to avoid some issues of Building Automation Systems. The platform allows the integration of several building automation protocols, eases the development and implementation of different kinds of services and allows sharing information related to the infrastructure and facilities within a building. The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La planificación de la movilidad sostenible urbana es una tarea compleja que implica un alto grado de incertidumbre debido al horizonte de planificación a largo plazo, la amplia gama de paquetes de políticas posibles, la necesidad de una aplicación efectiva y eficiente, la gran escala geográfica, la necesidad de considerar objetivos económicos, sociales y ambientales, y la respuesta del viajero a los diferentes cursos de acción y su aceptabilidad política (Shiftan et al., 2003). Además, con las tendencias inevitables en motorización y urbanización, la demanda de terrenos y recursos de movilidad en las ciudades está aumentando dramáticamente. Como consecuencia de ello, los problemas de congestión de tráfico, deterioro ambiental, contaminación del aire, consumo de energía, desigualdades en la comunidad, etc. se hacen más y más críticos para la sociedad. Esta situación no es estable a largo plazo. Para enfrentarse a estos desafíos y conseguir un desarrollo sostenible, es necesario considerar una estrategia de planificación urbana a largo plazo, que aborde las necesarias implicaciones potencialmente importantes. Esta tesis contribuye a las herramientas de evaluación a largo plazo de la movilidad urbana estableciendo una metodología innovadora para el análisis y optimización de dos tipos de medidas de gestión de la demanda del transporte (TDM). La metodología nueva realizado se basa en la flexibilización de la toma de decisiones basadas en utilidad, integrando diversos mecanismos de decisión contrariedad‐anticipada y combinados utilidad‐contrariedad en un marco integral de planificación del transporte. La metodología propuesta incluye dos aspectos principales: 1) La construcción de escenarios con una o varias medidas TDM usando el método de encuesta que incorpora la teoría “regret”. La construcción de escenarios para este trabajo se hace para considerar específicamente la implementación de cada medida TDM en el marco temporal y marco espacial. Al final, se construyen 13 escenarios TDM en términos del más deseable, el más posible y el de menor grado de “regret” como resultado de una encuesta en dos rondas a expertos en el tema. 2) A continuación se procede al desarrollo de un marco de evaluación estratégica, basado en un Análisis Multicriterio de Toma de Decisiones (Multicriteria Decision Analysis, MCDA) y en un modelo “regret”. Este marco de evaluación se utiliza para comparar la contribución de los distintos escenarios TDM a la movilidad sostenible y para determinar el mejor escenario utilizando no sólo el valor objetivo de utilidad objetivo obtenido en el análisis orientado a utilidad MCDA, sino también el valor de “regret” que se calcula por medio del modelo “regret” MCDA. La función objetivo del MCDA se integra en un modelo de interacción de uso del suelo y transporte que se usa para optimizar y evaluar los impactos a largo plazo de los escenarios TDM previamente construidos. Un modelo de “regret”, llamado “referencedependent regret model (RDRM)” (modelo de contrariedad dependiente de referencias), se ha adaptado para analizar la contribución de cada escenario TDM desde un punto de vista subjetivo. La validación de la metodología se realiza mediante su aplicación a un caso de estudio en la provincia de Madrid. La metodología propuesta define pues un procedimiento técnico detallado para la evaluación de los impactos estratégicos de la aplicación de medidas de gestión de la demanda en el transporte, que se considera que constituye una herramienta de planificación útil, transparente y flexible, tanto para los planificadores como para los responsables de la gestión del transporte. Planning sustainable urban mobility is a complex task involving a high degree of uncertainty due to the long‐term planning horizon, the wide spectrum of potential policy packages, the need for effective and efficient implementation, the large geographical scale, the necessity to consider economic, social, and environmental goals, and the traveller’s response to the various action courses and their political acceptability (Shiftan et al., 2003). Moreover, with the inevitable trends on motorisation and urbanisation, the demand for land and mobility in cities is growing dramatically. Consequently, the problems of traffic congestion, environmental deterioration, air pollution, energy consumption, and community inequity etc., are becoming more and more critical for the society (EU, 2011). Certainly, this course is not sustainable in the long term. To address this challenge and achieve sustainable development, a long‐term perspective strategic urban plan, with its potentially important implications, should be established. This thesis contributes on assessing long‐term urban mobility by establishing an innovative methodology for optimizing and evaluating two types of transport demand management measures (TDM). The new methodology aims at relaxing the utility‐based decision‐making assumption by embedding anticipated‐regret and combined utilityregret decision mechanisms in an integrated transport planning framework. The proposed methodology includes two major aspects: 1) Construction of policy scenarios within a single measure or combined TDM policy‐packages using the survey method incorporating the regret theory. The purpose of building the TDM scenarios in this work is to address the specific implementation in terms of time frame and geographic scale for each TDM measure. Finally, 13 TDM scenarios are built in terms of the most desirable, the most expected and the least regret choice by means of the two‐round Delphi based survey. 2) Development of the combined utility‐regret analysis framework based on multicriteria decision analysis (MCDA). This assessment framework is used to compare the contribution of the TDM scenario towards sustainable mobility and to determine the best scenario considering not only the objective utility value obtained from the utilitybased MCDA, but also a regret value that is calculated via a regret‐based MCDA. The objective function of the utility‐based MCDA is integrated in a land use and transport interaction model and is used for optimizing and assessing the long term impacts of the constructed TDM scenarios. A regret based model, called referente dependent regret model (RDRM) is adapted to analyse the contribution of each TDM scenario in terms of a subjective point of view. The suggested methodology is implemented and validated in the case of Madrid. It defines a comprehensive technical procedure for assessing strategic effects of transport demand management measures, which can be useful, transparent and flexible planning tool both for planners and decision‐makers.