999 resultados para body contours
Resumo:
Exploiting the body dynamics to control the behavior of robots is one of the most challenging issues, because the use of body dynamics has a significant potential in order to enhance both complexity of the robot design and the speed of movement. In this paper, we explore the control strategy of rapid four-legged locomotion by exploiting the intrinsic body dynamics. Based on the fact that a simple model of four-legged robot is known to exhibit interesting locomotion behavior, this paper analyzes the characteristics of the dynamic locomotion for the purpose of the locomotion control. The results from a series of running experiments with a robot show that, by exploiting the unique characteristics induced by the body dynamics, the forward velocity can be controlled by using a very simple method, in which only one control parameter is required. Furthermore it is also shown that a few of such different control parameters exist, each of them can control the forward velocity. Interestingly, with these parameters, the robot exhibits qualitatively different behavior during the locomotion, which could lead to our comprehensive understanding toward the behavioral diversity of adaptive robotic systems. © 2005 IEEE.
Resumo:
Flames are often stabilised on bluff-bodies, yet their surface temperatures are rarely measured. This paper presents temperature measurements for the bluff body surface of the Cambridge/Sandia Stratified Swirl Burner. The flame is stabilized by a bluff body, designed to provide a series of turbulent premixed and stratified methane/air flames with a variable degree of swirl and stratification. Recently, modellers have raised concerns about the role of surface temperature on the resulting gas temperatures and the overall heat loss of the burner. Laser-induced phosphorescence is used to measure surface temperatures, with Mg4GeO6F:Mn as the excitation phosphor, creating a spatially resolved temperature map. Results show that the temperature of the bluff body is in the range 550-900 K for different operating conditions. The temperature distribution is strongly correlated with the degree of swirl and local equivalence ratio, reflecting the temperature distribution obtained in the gas phase. The overall heat loss represents only a small fraction (<0.5%) of the total heat load, yet the local surface temperature may affect the local heat transfer and gas temperatures. © 2014 The Combustion Institute.
Resumo:
Experiments in tanks and cages were conducted to examine the effects of stocking density and body size of the Mitten crab (Eriocheir sinensis) on transplanted submersed macrophyte biomass. The early juvenile crab with 7.0 +/-0.6 mm. carapace width (CW) had little effect on plant biomass, regardless of the stocking densities. However, larger crabs (CW: 18.0 +/-2.2,35.0 +/-3.6, and 60.0 +/-5.7 mm) significantly influenced plant biomass, especially at large stocking densities. Predictive models, using crab body size and stocking density, were generated to demonstrate effect of the mitten crab on the changes Of plant biomass. The results indicate that dense mitten crab populations may adversely affect aquatic plant communities, particularly when its animal food resources are scarce.
Resumo:
To investigate the nature of compenstory growth in fish, an 8 week study at 28 degreesC was performed on juvenile gibel carp Carassius auratus gibelio weighing 6.6 g. Fish were starved for 0 (control), 1 (Sl)or 2 (S2) weeks and then re-fed to satiation For 5 weeks. Weekly changes in weight gain, feed intake and body composition were monitored during re-feeding. No significant difference was found in final body weight between the three groups, indicating complete compensation in the deprived fish, The deprived groups caught up in body weight with that of the control after 2 weeks of re-feeding. Body fat:lean body mass ratio was restored to the control level within 1 week of re-feeding. In the re-feeding period, weekly gains in body weight, protein. lipid, ash and energy in the S1 group were significantly higher than in the controls for 1 week. For the S2 group, weekly gains in body weight. lipid. ash and energy were higher than in the controls for 2 weeks, and gain in protein was higher than in the controls for 3 weeks, though gain in body energy became elevated again during the last 2 weeks of the experiment. Feed intake remained higher than the control level for 3 weeks in the S1 group and 3 weeks in the SZ group. Growth efficiency was not significantly different among the three groups in any of the weeks during re-feeding. Compensatory responses in growth and especially feed intake tended to last longer than the recovery of body composition. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
F-4 generation of human growth hormone (hGH) gene-transgenic red common carp, and the non-transgenic controls were fed for 8 weeks on purified diets with 20%, 30% or 40% protein. Analysis of whole-body amino acids showed that the proportions of lysine, leucine, phenylalanine, valine and alanine, as percentages of body protein, increased significantly, while those of arginine, glutamic acid and tyrosine decreased, with increases in dietary protein level in at least one strain of fish. Proportions of the other amino acids were unaffected by the diets. The proportions of lysine and arginine were significantly higher, while those of leucine and alanine were lower in the transgenics than in the controls in at least one diet group. Proportions of the other amino acids were unaffected by strain. The results suggest that the whole-body amino acid profile of transgenic carp, when expressed as proportions of body protein, was in general, similar to that of the non-transgenic controls. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A growth trial was conducted at 30 degrees C to investigate the effect of body size on growth and energy budget of Nile tilapia. The average initial body weights of the four size groups tested were 9.3, 34.1, 80.3 and 172.4 g, respectively. Fish were fed to satiation twice a day with a diet containing 35.6% crude protein. Food consumption (C-max: kJ/day) increased with body size (W: g) according to the relationship: Ln C-max = 1.45 + 0.42 LnW. The final body contents of dry matter, crude protein and ash per unit body weight increased with increasing body size while contents of fat and energy were independent of body size. Specific growth rates of wet weight, dry weight, protein and energy decreased as the fish increased in size. Feed efficiencies in wet weigh, dry weight and crude protein decreased with increasing body size, while that of energy remained unchanged. The proportions of energy intake allocated to the various components (faecal energy, excretory energy, heat production and recovered energy) of the energy budget were not significantly affected by body size, and the average budget was: 100IE-18.5(+/- 1.33)FE + 5.9 (+/- 3.09)(ZE + UE) + 49.3(+/- 3.77)HE + 26.3(+/- 6.23)RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. It is suggested that the decrease in growth rate in larger fish is mainly due to the decrease in relative food intake. (C) 1997 Elsevier Science B.V.
Resumo:
Growth and energy budget were measured for three sizes(2.4, 11.1 and 22.5 g) of juvenile white sturgeon Acipenser transmontanus held at 18.5 degrees C and fed tubificid worms at different levels ranging from starvation to ad libitum. For each size-class, specific growth rate increased linearly with increasing ration, and conversion efficiency was highest at the maximum ration. Growth rate decreased with increasing fish size at the maximum ration, but increased with size al each restricted ration. Conversion efficiency increased with increasing ration for each size-class and was usually highest at the maximum ration. Faecal production accounted for 3.2-5.2% of food energy. The proportion of food energy lost in nitrogenous excretion decreased with increasing ration. With increases in ration, the allocation of metabolizable energy to metabolism decreased, while that to growth increased. Fish size had no significant effect on the allocation of metabolizable energy to metabolism or growth. Al the maximum ration, on average 64.9% of metabolizable energy was spent on metabolism, and 35.1% on growth. (C) 1996 The Fisheries Society of the British Isles
Resumo:
As a solution of accurate simulation of the body effect in PD SOI analogue circuit, a simulation model of distributed body contact resistance and parasitical capacitance is presented. Based on this model, we have designed and simulated a sense amplifier that applied to V a 0.8um PD SOI 64K SRAM.
Resumo:
The slender axis-symmetric submarine body moving in the vertical plane is the object of our investigation. A coupling model is developed where displacements of a solid body as a Euler beam (consisting of rigid motions and elastic deformations) and fluid pressures are employed as basic independent variables, including the interaction between hydrodynamic forces and structure dynamic forces. Firstly the hydrodynamic forces, depending on and conversely influencing body motions, are taken into account as the governing equations. The expressions of fluid pressure are derived based on the potential theory. The characteristics of fluid pressure, including its components, distribution and effect on structure dynamics, are analyzed. Then the coupling model is solved numerically by means of a finite element method (FEM). This avoids the complicacy, combining CFD (fluid) and FEM (structure), of direct numerical simulation, and allows the body with a non-strict ideal shape so as to be more suitable for practical engineering. An illustrative example is given in which the hydroelastic dynamic characteristics, natural frequencies and modes of a submarine body are analyzed and compared with experimental results. Satisfactory agreement is observed and the model presented in this paper is shown to be valid.