954 resultados para blood transfusion
Resumo:
Blood meal and full fat soyabean meal were mixed in different proportions to give 0%, 10%, 25%, 50%, 75%, 90% and 100% meal in the protein fraction of the diet and fed to Claria anguillaris fingerlings in floating hapas. The growth performance of the fingerlings were monitored for 84 days. At the end of the experiment the mean weight of the fingerlings increased in the level of blood meal up to 50% blood meal in the diet after which there was a decline in the mean weight of the fish. This same level of blood meal gave the best specific growth rate, feed conversion efficiency and protein efficiency ratio. Thus the nutritive value of blood meal was enhanced by the addition of an equal level of full fat soyabean meal in the diet
Resumo:
The effect of alcohol solution on single human red blood Cells (RBCs) was investigated using near-infrared laser tweezers Raman spectroscopy (LTRS). In our system, a low-power diode laser at 785 nm was applied for the trapping of a living cell and the excitation of its Raman spectrum. Such a design could simultaneously reduce the photo-damage to the cell and suppress the interference from the fluorescence on the Raman signal. The denaturation process of single RBCs in 20% alcohol solution was investigated by detecting the time evolution of the Raman spectra at the single-cell level. The vitality of RBCs was characterized by the Raman band at 752 cm(-1), which corresponds to the porphyrin breathing mode. We found that the intensity of this band decreased by 34.1% over a period of 25 min after the administration of alcohol. In a further study of the dependence of denaturation on alcohol concentration, we discovered that the decrease in the intensity of the 752 cm(-1) band became more rapid and more prominent as the alcohol concentration increased. The present LTRS technique may have several potential applications in cell biology and medicine, including probing dynamic cellular processes at the single cell level and diagnosing cell disorders in real time. Copyright (c) 2005 John Wiley T Sons, Ltd.
Resumo:
Chronic diseases of the central nervous system are poorly treated due to the inability of most therapeutics to cross the blood-brain barrier. The blood-brain barrier is an anatomical and physiological barrier that severely restricts solute influx, including most drugs, from the blood to the brain. One promising method to overcome this obstacle is to use endogenous solute influx systems at the blood-brain barrier to transport drugs. Therapeutics designed to enter the brain through transcytosis by binding the transferrin receptor, however, are restricted within endothelial cells. The focus of this work was to develop a method to increase uptake of transferrin-containing nanoparticles into the brain by overcoming these restrictive processes.
To accomplish this goal, nanoparticles were prepared with surface transferrin molecules bound through various liable chemical bonds. These nanoparticles were designed to shed the targeting molecule during transcytosis to allow increased accumulation of nanoparticles within the brain.
Transferrin was added to the surface of nanoparticles through either redox or pH sensitive chemistry. First, nanoparticles with transferrin bound through disulfide bonds were prepared. These nanoparticles showed decreased avidity for the transferrin receptor after exposure to reducing agents and increased ability to enter the brain in vivo compared to those lacking the disulfide link.
Next, transferrin was attached through a chemical bond that cleaves at mildly acidic pH. Nanoparticles containing a cleavable link between transferrin and gold nanoparticle cores were found to both cross an in vitro model of the blood-brain barrier and accumulate within the brain in significantly higher numbers than similar nanoparticles lacking the cleavable bond. Also, this increased accumulation was not seen when using this same strategy with an antibody to transferrin receptor, indicating that behavior of nanoparticles at the blood-brain barrier varies depending on what type of targeting ligand is used.
Finally, polymeric nanoparticles loaded with dopamine and utilizing a superior acid-cleavable targeting chemistry were investigated as a potential treatment for Parkinson’s disease. These nanoparticles were capable of increasing dopamine quantities in the brains of healthy mice, highlighting the therapeutic potential of this design. Overall, this work describes a novel method to increase targeted nanoparticle accumulation in the brain.
Resumo:
Objective: analyze and propose a theoretical model that describes blood donor decisions to help staff working in blood banks (nurses and others) in their efforts to capture and retain donors. Methods: analysis of several studies on the motivations to give blood in Spain over the last six years, as well as past literature on the topic, the authors' experiences in the last 25 years in over 15 Non Governmental Organizations with different levels of responsibilities, their experiences as blood donors and the informal interviews developed during those 25 years. Results: a model is proposed with different internal and external factors that influence blood donation, as well as the different stages of the decision-making process. Conclusion: the knowledge of the donation process permits the development of marketing strategies that help to increase donors and donations.
Potential pathological effects of Blood Flukes (Digenea:Sanguinicolidae) on pen-reared marine fishes
Resumo:
Osteogenesis imperfecta (OI or brittle bone disease) is a disorder of connective tissues caused by mutations in the collagen genes. We previously showed that intrauterine transplantation of human blood fetal stem/stromal cells in OI mice (oim) resulted in a significant reduction of bone fracture. This work examines the cellular mechanisms and mechanical bone modifications underlying these therapeutic effects, particularly examining the direct effects of donor collagen expression on bone material properties. In this study, we found an 84% reduction in femoral fractures in transplanted oim mice. Fetal blood stem/stromal cells engrafted in bones, differentiated into mature osteoblasts, expressed osteocalcin, and produced COL1a2 protein, which is absent in oim mice. The presence of normal collagen decreased hydroxyproline content in bones, altered the apatite crystal structure, increased the bone matrix stiffness, and reduced bone brittleness. In conclusion, expression of normal collagen from mature osteoblast of donor origin significantly decreased bone brittleness by improving the mechanical integrity of the bone at the molecular, tissue, and whole bone levels.
Resumo:
Horseshoe crabs (Limulus polyphemus) are caught by commercial fishermen for use as bait in eel and whelk fisheries (Berkson and Shuster, 1999)—fisheries with an annual economic value of $13 to $17 million (Manion et al.1). Horse-shoe crabs are ecologically important, as well (Walls et al., 2002). Migratory shorebirds rely on horseshoe crab eggs for food as they journey from South American wintering grounds to Arctic breeding grounds (Clark, 1996). Horse-shoe crabs are also essential for public health (Berkson and Shuster, 1999). Biomedical companies bleed horse-shoe crabs to extract a chemical used to detect the presence of endotoxins pathogenic to humans in injectable and implantable medical devices (Novitsky, 1984; Mikkelsen, 1988). Bled horseshoe crabs are returned to the wild, subject to the possibility of postbleeding mortality. Recent concerns of overharvesting have led to conflicts among commercial fishermen, environmentalists acting on behalf of the shorebirds, and biomedical companies (Berkson and Shuster, 1999; Walls et al., 2002).
Resumo:
The acute toxic effect of the toxicant sumithion (50% E.C.) on mortality rate (after 24, 48, 72, and 96 h), total RBC count and haemoglobin content (after 48 and 72 h) on Heteropneustes fossilis was investigated at four concentrations (9.7, 10.7 and 11.1 ppm). The sumithion treated fishes showed lower RBC and Hb levels than the untreated ones. A gradual decrease in the total RBC counts and Hb contents was recorded with increasing concentration of toxicant after 72 h but the blood showed fluctuating values after 48 h of treatment.
Resumo:
The present communication deals with the feeding trials of brown (Sargassum bovianum), green (Caulerpa faridii) and red (Gracilaria corticola) seaweeds in albino rats for a period of thirty days in order to investigate their digestibility and acceptability as supplementary food for animals. The parameters used were: changes in blood hemoglobin, ESR, MCHC, PCV and plasma vitamin levels. The result revealed that all the three species of seaweeds had acceptability up to 5% level, as no ill effect was noted during the experiment. But at 10% and 20% levels, marked changes were observed in blood parameters with diarrhea, vomiting and convulsions indicating possibilities of either tissue and muscular dystrophy, gastrointestinal tract necrosis or functional disorder of central nervous system. A heavy mortality was noted due to excessive water loss through diarrhea and vomiting. However, no mortality was observed after 22nd day at both 10% and 20% levels with subsided clinical signs. The results suggest that these three seaweed species could be used safely as a supplementary food, in native form, in animals at low concentrations.
Resumo:
Different types of haematocytes found in the peripheral blood of walking catfish Clarias batrachus, have been characterized and identified using morphological, morphometric and cytochemical techniques. These cells are: erythrocytes, reticulocytes, large and small lymphocytes, thrombocytes, monocytes and polymorphonuclear leucocytes (neutrophils).
Resumo:
The sulfide binding characteristics of blood serum were studied in vitro in two deep-sea vesicomyid clams, Calyptogena pacifica and Vesicomya gigas. Both the C. pacifica and the V. gigas serum concentrated sulfide at least an order of magnitude above ambient levels. V. gigas accumulated sulfide faster than C. pacifica, reaching saturation at 5000 M after an hour. C. pacifica bound sulfide at half the rate of V. gigas, reaching saturation in about two hours at a substantially higher concentration of sulfide. The observed distribution of the animals near cold seeps in the Monterey Submarine Canyon can be explained by their different sulfide binding abilities. The hypothesis that cold seeps are actually much more unstable sources of sulfide than previously assumed is explored.
Resumo:
Protein electrophoresis was used to examine the blood protein polymorphism in Yunnan local pig breeds, i.e., the Saba pig, Dahe pig, and Diannan small-ear pig breeds, Of 38 genetic loci surveyed 9 were found to be polymorphic. The percentage of polymorphic loci (P) varies from 0.1875 to 0.2121, and the mean individual heterozygosity (H) varies front 0.0712 to 0.1027 in three pig breeds. The results indicate that blood protein polymorphism in Yunnan pig breeds is high. Yunnan local pig breeds have a wealth of genetic diversity at the level of blood proteins.
Resumo:
In observation of in vitro phagocytic activity against Aeromonas hydrophila isolate 34k (a virulent form) and Escherichia coli (an avirulent bacteria) of neutrophil- and monocyte-like cells of walking catfish Clarias batrachus showed phagocytosis. N eutrophils and monocytes phagocytized the avirulent form of bacterial isolate more than the virulent one. Other blood leucocytes did not show phagocytosis. Peritoneal macrophage of the fish were separated by glycogen elicitation and the macrophages were being adhered on plastic cover slips for studying their in vitro phagocytic activity. Most of the cells were alive after adherence and showed phagocytosis against the virulent and avirulent bacteria. The percent phagocytosis and phagocytic index were higher against the avirulent E. coli than the virulent A. hydrophila.
Resumo:
A specific blood coagulation factor X activator was purified from the venom of Ophiophagus hannah by gel filtration and two steps of FPLC Mono-Q column ion-exchange chromatography. It showed a single protein band both in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline polyacrylamide gel electrophoresis. The mol. wt was estimated to be 62,000 in non-reducing conditions and 64,500 in reducing conditions by SDS-PAGE. The isoelectric point was found to be pH 5.6. The enzyme had weak amidolytic activities toward CBS 65-25, but it showed no activities on S-2266, S-2302, thrombin substrate S-2238, plasmin substrate S-2251 or factor Xa substrate S-2222. It had no arginine esterase activity toward substrate benzoylarginine ethylester (BAEE). The enzyme activated factor X in vitro and the effect was absolutely Ca2+ dependent, with a Hill coefficient of 6.83. It could not activate prothrombin nor had any effect on fibrinogen and thus appeared to act specifically on factor X. The procoagulant activity of the enzyme was almost completely inhibited by serine protease inhibitors like PMSF, TPCK and soybean trypsin inhibitor; partially inhibited by L-cysteine. Metal chelator EDTA did not inhibit its procoagulant activity. These results suggest that the factor X activator from O. hannah venom is a serine protease.