527 resultados para bk: Biographien
Resumo:
Fluorine concentrations were determined ionometrically with an error of 0.02% in iron-manganese materials of the ocean. They were: 0.02-0.04% in ocean iron-manganese nodules, with the exception of two specimens (0.08% and 0.20% F); up to 0.02% in iron-manganese nodules of seas; 0.02-1.17% in ore crusts from ocean seamounts; and 0.02% in ore sediments of the Red Sea. Elevated fluorine content of ore crusts is associated with presence of calcium phosphate inclusions in them. Fluorine is not accumulated during iron-manganese nodule mineralization. Its average concentration in the nodules is half that in host deep-sea sediments.
Resumo:
bk. 2
Resumo:
bk. 1
Resumo:
Acknowledgements We would like to thank the staff of the animal facility for their support and care for our animals. Funding was provided by the Wellcome Trust (102705) and Medical Research Council (UK) (MR/J004820/1) and a University of Aberdeen Studentship to BK.
Resumo:
Experiments were performed on uteri from estrogen-primed female rats. Bradykinin (BK) (10−8 M) significantly augmented biosynthesis of prostaglandin F2 α (PGF2α) and prostaglandin E2 (PGE2), and this synthesis was completely blocked by NG-monomethyl l-arginine (NMMA) (300 μM), a competitive inhibitor of nitric oxide synthase (NOS). Blockade of prostaglandin synthesis by indomethacin caused rapid dissipation of isometric developed tension (IDT) induced by BK. Blockade of NOS with NMMA had similar but less marked effects. Combining the two inhibitors produced an even more rapid decay in IDT, suggesting that BK-induced NO release maintains IDT by release of prostanoids. The decline of frequency of contraction (FC) was not significantly altered by either indomethacin or NMMA but was markedly accelerated by combination of the inhibitors, which suggests that PGs maintain FC and therefore FC decline is accelerated only when PG production is blocked completely by combination of the two inhibitors of PG synthesis. The increase in IDT induced by oxytocin was unaltered by indomethacin, NMMA or their combination indicating that neither NO nor PGs are involved in the contractions induced by oxytocin. However, the decline in FC with time was significantly reduced by the inhibitor of NOS, NMMA, suggesting that FC decay following oxytocin is caused by NO released by the contractile process. In the case of PGF2α, NMMA resulted in increased initial IDT and FC. The decline in FC was rapid and dramatically inhibited by NMMA. Receptor-mediated contraction by BK, oxytocin, and PGF2α is modulated by NO that maintains IDT by releasing PGs but reduces IDT and FC via cyclic GMP.
Resumo:
The vast majority of the known biological effects of the renin–angiotensin system are mediated by the type-1 (AT1) receptor, and the functions of the type-2 (AT2) receptor are largely unknown. We investigated the role of the AT2 receptor in the vascular and renal responses to physiological increases in angiotensin II (ANG II) in mice with targeted deletion of the AT2 receptor gene. Mice lacking the AT2 receptor (AT2-null mice) had slightly elevated systolic blood pressure (SBP) compared with that of wild-type (WT) control mice (P < 0.0001). In AT2-null mice, infusion of ANG II (4 pmol/kg/min) for 7 days produced a marked and sustained increase in SBP [from 116 ± 0.5 to 208 ± 1 mmHg (P < 0.0001) (1 mmHg = 133 Pa)] and reduction in urinary sodium excretion (UNaV) [from 0.6 ± 0.01 to 0.05 ± 0.002 mM/day (P < 0.0001)] whereas neither SBP nor UNaV changed in WT mice. AT2-null mice had low basal levels of renal interstitial fluid bradykinin (BK), and cyclic guanosine 3′,5′-monophosphate, an index of nitric oxide production, compared with WT mice. In WT mice, dietary sodium restriction or ANG II infusion increased renal interstitial fluid BK, and cyclic guanosine 3′,5′-monophosphate by ≈4-fold (P < 0.0001) whereas no changes were observed in AT2-null mice. These results demonstrate that the AT2 receptor is necessary for normal physiological responses of BK and nitric oxide to ANG II. Absence of the AT2 receptor leads to vascular and renal hypersensitivity to ANG II, including sustained antinatriuresis and hypertension. These results strongly suggest that the AT2 receptor plays a counterregulatory protective role mediated via BK and nitric oxide against the antinatriuretic and pressor actions of ANG II.