1000 resultados para bile flow
Resumo:
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Resumo:
To measure the average length of telomere repeats at chromosome ends in individual cells we developed a flow cytometry method using fluorescence in situ hybridization (flow FISH) with labeled peptide nucleic acid (PNA) probes. Results of flow FISH measurements correlated with results of conventional telomere length measurements by Southern blot analysis (R = 0.9). Consistent differences in telomere length in CD8+ T-cell subsets were identified. Naive and memory CD4+ T lymphocytes in normal adults differed by around 2.5 kb in telomere length, in agreement with known replicative shortening of telomeres in lymphocytes in vivo. T-cell clones grown in vitro showed stabilization of telomere length after an initial decline and rare clones capable of growing beyond 100 population doublings showed variable telomere length. These results show that flow FISH can be used to measure specific nucleotide repeat sequences in single cells and indicate that the very large replicative potential of lymphocytes is only indirectly related to telomere length.
Resumo:
This study explores whether firms have differential price-earnings multiples associated with their means of achieving a sequential pattern of increasing positive earnings. Our main findings show that market participants assign higher price-earnings multiples to firms when their pattern of increasing earnings is supported by the same pattern of increasing cash flows. Market participants assign lower price-earnings multiples to firms suspect of having engaged in accrual-based earnings management, sales manipulation, and overproduction to achieve the earnings pattern. We find, however, that market participants do not penalize firms suspect of having achieved the earnings pattern through the opportunistic reduction of discretionary expenses.
Resumo:
Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.
Resumo:
Biochemical systems are commonly modelled by systems of ordinary differential equations (ODEs). A particular class of such models called S-systems have recently gained popularity in biochemical system modelling. The parameters of an S-system are usually estimated from time-course profiles. However, finding these estimates is a difficult computational problem. Moreover, although several methods have been recently proposed to solve this problem for ideal profiles, relatively little progress has been reported for noisy profiles. We describe a special feature of a Newton-flow optimisation problem associated with S-system parameter estimation. This enables us to significantly reduce the search space, and also lends itself to parameter estimation for noisy data. We illustrate the applicability of our method by applying it to noisy time-course data synthetically produced from previously published 4- and 30-dimensional S-systems. In addition, we propose an extension of our method that allows the detection of network topologies for small S-systems. We introduce a new method for estimating S-system parameters from time-course profiles. We show that the performance of this method compares favorably with competing methods for ideal profiles, and that it also allows the determination of parameters for noisy profiles.
Resumo:
Water balance is achieved through the ability of the kidney to control water reabsorption in the connecting tubule and the collecting duct. In a mouse cortical collecting duct cell line (mCCD(c11)), physiological concentrations of arginine vasopressin increased both electrogenic, amiloride-sensitive, epithelial sodium channel (ENaC)-mediated sodium transport measured by the short-circuit current (Isc) method and water flow (Jv apical to basal) measured by gravimetry with similar activation coefficient K(1/2) (6 and 12 pM, respectively). Jv increased linearly according to the osmotic gradient across the monolayer. A small but highly significant Jv was also measured under isoosmotic conditions. To test the coupling between sodium reabsorption and water flow, mCCD(c11) cells were treated for 24 h under isoosmotic condition with either diluent, amiloride, vasopressin or vasopressin and amiloride. Isc, Jv, and net chemical sodium fluxes were measured across the same monolayers. Around 30% of baseline and 50% of vasopressin-induced water flow is coupled to an amiloride-sensitive, ENaC-mediated, electrogenic sodium transport, whereas the remaining flow is coupled to an amiloride-insensitive, nonelectrogenic sodium transport mediated by an unknown electroneutral transporter. The mCCD(c11) cell line is a first example of a mammalian tight epithelium allowing quantitative study of the coupling between sodium and water transport. Our data are consistent with the 'near isoosmotic' fluid transport model.
Resumo:
PURPOSE: To evaluate accuracy and reproducibility of flow velocity and volume measurements in a phantom and in human coronary arteries using breathhold velocity-encoded (VE) MRI with spiral k-space sampling at 3 Tesla. MATERIALS AND METHODS: Flow velocity assessment was performed using VE MRI with spiral k-space sampling. Accuracy of VE MRI was tested in vitro at five constant flow rates. Reproducibility was investigated in 19 healthy subjects (mean age 25.4 +/- 1.2 years, 11 men) by repeated acquisition in the right coronary artery (RCA). RESULTS: MRI-measured flow rates correlated strongly with volumetric collection (Pearson correlation r = 0.99; P < 0.01). Due to limited sample resolution, VE MRI overestimated the flow rate by 47% on average when nonconstricted region-of-interest segmentation was used. Using constricted region-of-interest segmentation with lumen size equal to ground-truth luminal size, less than 13% error in flow rate was found. In vivo RCA flow velocity assessment was successful in 82% of the applied studies. High interscan, intra- and inter-observer agreement was found for almost all indices describing coronary flow velocity. Reproducibility for repeated acquisitions varied by less than 16% for peak velocity values and by less than 24% for flow volumes. CONCLUSION: 3T breathhold VE MRI with spiral k-space sampling enables accurate and reproducible assessment of RCA flow velocity.
Resumo:
The identification and integration of reusable and customizable CSCL (Computer Supported Collaborative Learning) may benefit from the capture of best practices in collaborative learning structuring. The authors have proposed CLFPs (Collaborative Learning Flow Patterns) as a way of collecting these best practices. To facilitate the process of CLFPs by software systems, the paper proposes to specify these patterns using IMS Learning Design (IMS-LD). Thus, teachers without technical knowledge can particularize and integrate CSCL tools. Nevertheless, the support of IMS-LD for describing collaborative learning activities has some deficiencies: the collaborative tools that can be defined in these activities are limited. Thus, this paper proposes and discusses an extension to IMS-LD that enables to specify several characteristics of the use of tools that mediate collaboration. In order to obtain a Unit of Learning based on a CLFP, a three stage process is also proposed. A CLFP-based Unit of Learning example is used to illustrate the process and the need of the proposed extension.
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.
Resumo:
OBJECTIVE: Absent or reverse end-diastolic flow (Doppler II/III) in umbilical artery is correlated with poor perinatal outcome, particularly in intrauterine growth restricted (IUGR) fetuses. The optimal timing of delivery is still controversial. We studied the short- and long-term morbidity and mortality among these children associated with our defined management. STUDY DESIGN: Sixty-nine IUGR fetuses with umbilical Doppler II/III were divided into three groups; Group 1, severe early IUGR, no therapeutic intervention (n = 7); Group 2, fetuses with pathological biophysical profile, immediate delivery (n = 35); Group 3, fetuses for which expectant management had been decided (n = 27). RESULTS: In Group 1, stillbirth was observed after a mean delay of 6.3 days. Group 2 delivered at an average of 31.6 weeks and two died in the neonatal period (6%). In Group 3 after a mean delay of 8 days, average gestational age at delivery was 31.7 weeks; two intra uterine and four perinatal deaths were observed (22%). Long-term follow-up revealed no sequelae in 25/31 (81%) and 15/18 (83%), and major handicap occurred in 1 (3%) and 2 patients (11%), respectively, for Groups 2 and 3. CONCLUSION: Fetal mortality was observed in 22% of this high risk group. After a mean period of follow-up of 5 years, 82% of infants showed no sequelae. According to our management, IUGR associated with umbilical Doppler II or III does not show any benefit from an expectant management in term of long-term morbidity.
Resumo:
The size of breeding units and the hierarchical population structure of the dioecious perennial herb Silene dioica were investigated on four closely situated island populations in the Skeppsvik Archipelago in northern Sweden. F-statistics analyses of nine polymorphic allozyme loci revealed that plants on single islands are divided into many small breeding units, between 0.2 m2 and 6 m2. Hierarchical analyses showed that levels of differentiation among subpopulations within islands (FPL=0.080) were about twice as high as among islands (FLT=0.048). These results are discussed in the light of what is known about pollen and seed movement in the archipelago.
Resumo:
Adequate supply of oxygen to the brain is critical for maintaining normal brain function. Severe hypoxia, such as that experienced during high altitude ascent, presents a unique challenge to brain oxygen (O2) supply. During high-intensity exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, followed by reductions in cerebral blood flow (CBF), oxygen delivery (DO2), and tissue oxygenation. This reduced O2 supply to the brain could potentially account for the reduced performance typically observed during exercise in severe hypoxic conditions. The aims of this thesis were to document the effect of acute and chronic exposure to hypoxia on CBF control, and to determine the role of cerebral DO2 and tissue oxygenation in limiting performance during exercise in severe hypoxia. We assessed CBF, arterial O2 content (CaO2), haemoglobin concentration ([Hb]), partial pressure of arterial O2 (PaO2), cerebrovascular CO2 reactivity, ventilatory response to CO2, cerebral autoregulation (CA), and estimated cerebral DO2 (CBF ⨉ CaO2) at sea level (SL), upon ascent to 5,260 m (ALT1), and following 16 days of acclimatisation to 5,260 m (ALT16). We found an increase in CBF despite an elevated cerebrovascular CO2 reactivity at ALT1, which coincided with a reduced CA. Meanwhile, PaO2 was greatly decreased despite increased ventilatory drive at ALT1, resulting in a concomitant decrease in CaO2. At ALT16, CBF decreased towards SL values, while cerebrovascular CO2 reactivity and ventilatory drive were further elevated. Acclimatisation increased PaO2, [Hb], and therefore CaO2 at ALT16, but these changes did not improve CA compared to ALT1. No differences were observed in cerebral DO2 across SL, ALT1, and ALT16. Our findings demonstrate that cerebral DO2 is maintained during both acute and chronic exposure to 5,260 m, due to the reciprocal changes in CBF and CaO2. We measured middle cerebral artery velocity (MCAv: index of CBF), cerebral DO2, ventilation (VE), and performance during incremental cycling to exhaustion and 15km time trial cycling in both normoxia and severe hypoxia (11% O2, normobaric), with and without added CO2 to the inspirate (CO2 breathing). We found MCAv was higher during exercise in severe hypoxia compared in normoxia, while cerebral tissue oxygenation and DO2 were reduced. CO2 breathing was effective in preventing the development of hyperventilation-induced hypocapnia during intense exercise in both normoxia and hypoxia. As a result, we were able to increase both MCAv and cerebral DO2 during exercise in hypoxia with our CO2 breathing setup. However, we concomitantly increased VE and PaO2 (and presumably respiratory work) due to the increased hypercapnic stimuli with CO2 breathing, which subsequently contributed to the cerebral DO2 increase during hypoxic exercise. While we effectively restored cerebral DO2 during exercise in hypoxia to normoxic values with CO2 breathing, we did not observe any improvement in cerebral tissue oxygenation or exercise performance. Accordingly, our findings do not support the role of reduced cerebral DO2 in limiting exercise performance in severe hypoxia. -- Un apport adéquat en oxygène au niveau du cerveau est primordial pour le maintien des fonctions cérébrales normales. L'hypoxie sévère, telle qu'expérimentée au cours d'ascensions en haute altitude, présente un défi unique pour l'apport cérébral en oxygène (O2). Lors d'exercices à haute intensité, l'hypocapnie induite par l'hyperventilation entraîne une vasoconstriction cérébrale suivie par une réduction du flux sanguin cérébral (CBF), de l'apport en oxygène (DO2), ainsi que de l'oxygénation tissulaire. Cette réduction de l'apport en O2 au cerveau pourrait potentiellement être responsable de la diminution de performance observée au cours d'exercices en condition d'hypoxie sévère. Les buts de cette thèse étaient de documenter l'effet de l'exposition aiguë et chronique à l'hypoxie sur le contrôle du CBF, ainsi que de déterminer le rôle du DO2 cérébral et de l'oxygénation tissulaire comme facteurs limitant la performance lors d'exercices en hypoxie sévère. Nous avons mesuré CBF, le contenu artériel en oxygène (CaO2), la concentration en hémoglobine ([Hb]), la pression partielle artérielle en O2 (PaO2), la réactivité cérébrovasculaire au CO2, la réponse ventilatoire au CO2, et l'autorégulation cérébrale sanguine (CA), et estimé DO2 cérébral (CBF x CaO2), au niveau de la mer (SL), au premier jour à 5.260 m (ALT1) et après seize jours d'acclimatation à 5.260 m (ALT16). Nous avons trouvé des augmentations du CBF et de la réactivité cérébrovasculaire au CO2 après une ascension à 5.260 m. Ces augmentations coïncidaient avec une réduction de l'autorégulation cérébrale. Simultanément, la PaO2 était grandement réduite, malgré l'augmentation de la ventilation (VE), résultant en une diminution de la CaO2. Après seize jours d'acclimatation à 5.260 m, le CBF revenait autour des valeurs observées au niveau de la mer, alors que la réactivité cérébrovasculaire au CO2 et la VE augmentaient par rapport à ALT1. L'acclimatation augmentait la PaO2, la concentration en hémoglobine, et donc la CaO2, mais n'améliorait pas l'autorégulation cérébrale, comparé à ALT1. Aucune différence n'était observée au niveau du DO2 cérébral entre SL, ALT1 et ALT16. Nos résultats montrent que le DO2 cérébral est maintenu constant lors d'expositions aiguë et chronique à 5.260m, ce qui s'explique par la réciprocité des variations du CBF et de la CaO2. Nous avons mesuré la vitesse d'écoulement du sang dans l'artère cérébrale moyenne (MCAv : un indice du CBF), le DO2 cérébral, la VE et la performance lors d'exercice incrémentaux jusqu'à épuisement sur cycloergomètre, ainsi que des contre-la-montres de 15 km en normoxie et en hypoxie sévère (11% O2, normobarique) ; avec ajout ou non de CO2 dans le mélange gazeux inspiré. Nous avons trouvé que MCAv était plus haute pendant l'exercice hypoxique, comparé à la normoxie alors que le DO2 cérébral était réduit. L'ajout de CO2 dans le gaz inspiré était efficace pour prévenir l'hypocapnie induite par l'hyperventilation, qui se développe à l'exercice intense, à la fois en normoxie et en hypoxie. Nous avons pu augmenter MCAv et le DO2 cérébral pendant l'exercice hypoxique, grâce à l'ajout de CO2. Cependant, nous avons augmenté la VE et la PaO2 (et probablement le travail respiratoire) à cause de l'augmentation du stimulus hypercapnique. Alors que nous avons, grâce à l'ajout de CO2, efficacement restauré le DO2 cérébral au cours de l'exercice en hypoxie à des valeurs obtenues en normoxie, nous n'avons observé aucune amélioration dans l'oxygénation du tissu cérébral ou de la performance. En conséquence, nos résultats ne soutiennent pas le rôle d'un DO2 cérébral réduit comme facteur limitant de la performance en hypoxie sévère.
Resumo:
From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) interacts with selectins to support leukocyte rolling along vascular wall. L- and P-selectin bind to N-terminal tyrosine sulfate residues and to core-2 O-glycans attached to Thr-57, whereas tyrosine sulfation is not required for E-selectin binding. PSGL-1 extracellular domain contains decameric repeats, which extend L- and P-selectin binding sites far above the plasma membrane. We hypothesized that decamers may play a role in regulating PSGL-1 interactions with selectins. Chinese hamster ovary cells expressing wild-type PSGL-1 or PSGL-1 molecules exhibiting deletion or substitution of decamers with the tandem repeats of platelet glycoprotein Ibalpha were compared in their ability to roll on selectins and to bind soluble L- or P-selectin. Deletion of decamers abrogated soluble L-selectin binding and cell rolling on L-selectin, whereas their substitution partially reversed these diminutions. P-selectin-dependent interactions with PSGL-1 were less affected by decamer deletion. Videomicroscopy analysis showed that decamers are required to stabilize L-selectin-dependent rolling. Importantly, adhesion assays performed on recombinant decamers demonstrated that they directly bind to E-selectin and promote slow rolling. Our results indicate that the role of decamers is to extend PSGL-1 N terminus far above the cell surface to support and stabilize leukocyte rolling on L- or P-selectin. In addition, they function as a cell adhesion receptor, which supports approximately 80% of E-selectin-dependent rolling.