998 resultados para beam auto-alignment
Resumo:
We present an efficient photorefractive volume hologram recording technique with a pulsed signal beam and continuous reference-beam illumination. The grating envelope can be simply controlled by manipulation of the duty cycle of the signal beam. Thus, for any grating coupling strength and different initial reference-signal intensity ratios, the diffraction efficiency can be maximized with this technique and can be greatly increased in comparison with that of the conventional recording technique. (C) 1998 Optical Society of America.
Resumo:
We propose an experimentally feasible scheme to generate various types of entangled states of light fields by using beam splitters and single-photon detectors. Two beams of light fields are incident on two beam splitters respectively with each beam being asymmetrically split into two parts in which one part is supposed to be so weak that it contains at most one photon. We let the two weak output modes interfere at a third beam splitter. A conditional joint measurement on both weak output modes may result in an entanglement between the other two output modes. The conditions for the maximal entanglement are discussed based on the concurrence. Several specific examples are also examined.
Resumo:
Electron acceleration in a tightly focused ultra-intensity linear polarized laser beam is investigated numerically. It has been found that the acceleration is strong phase dependent and is periodic to the variety of the initial laser field phase. When optimal initial parameters are chosen, the electron can be accelerated effectively. The accelerated electrons are emitted in pulses of which the full width is less than the half period of the laser field.
Resumo:
Electron acceleration using a tightly focused ultraintensity laser beam is investigated numerically and strong phase dependence is found. The acceleration is periodic to the variety of the initial laser field phase, and the accelerated electrons are emitted in pulses of which the full width is the half period of the laser field. When a 10 PW intense laser beam is used, the electron with energy less than 1 Mev can be accelerated up to energies about 1.4 GeV. The optimal initial condition for electron acceleration is found. (C) 2005 American Institute of Physics.
Resumo:
Nanoripples with periods of 150 and 80 nm are formed on the surface of 6H-SiC crystals irradiated by the p-polarized 800 nm and the s-polarized 400 nm femtosecond lasers, respectively. When both of the two collinear laser beams focus simultaneously on the sample surface, nanoparticles are formed on the whole ablation area, and they array in parallel lines. We propose and confirm that the second harmonics in the sample surface excited by the incident lasers plays an important role in the formation of nanostructures.
Resumo:
This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.
We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.
We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.
We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.
Resumo:
A repeat-until-success (RUS) measurement-based scheme for the implementation of the distributed quantum computation by using single-photon interference at a 50:50 beam splitter is proposed. It is shown that the 50:50 beam splitter can naturally project a suitably encoded matter-photon state to either a desired entangling gate-operated state of the matter qubits or to their initial state when the photon is detected. The recurrence of the initial state permits us to implement the desired entangling gate in a RUS way. To implement a distributed quantum computation we suggest an encoding method by means of the effect of dipole-induced transparency proposed recently [E. Waks and J. Vuckovic, Phys. Rev. Lett. 96, 153601 (2006)]. The effects of the unfavorable factors on our scheme are also discussed.
Resumo:
Two-dimensional periodic nanostructures on ZnO crystal surface were fabricated by two-beam interference of 790 nm femtosecond laser. The long period is, as usually reported, determined by the interference pattern of two laser beams. Surprisingly, there is another short periodic nanostructures with periods of 220-270 nm embedding in the long periodic structures. We studied the periods, orientation, and the evolution of the short periodic nanostructures, and found them analogous to the self-organized nanostructures induced by single fs laser beam. (C) 2008 Optical Society of America.
Resumo:
We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.
Resumo:
We employ the variational method to study the optical guiding of an intense laser beam in a preformed plasma channel without using the weakly relativistic approximation. Apart from the dependence on the laser power and the nonlinear channel strength parameter, the beam focusing properties is shown also to be governed by the laser intensity. Relativistic channel-coupling focusing, arising from the coupling between relativistic self-focusing and linear channel focusing, can enhance relativistic self-focusing but its strength is weaker than that of linear channel focusing. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A scheme for electron self-injection in the laser wakefield acceleration is proposed. In this scheme, the transverse wave breaking of the wakefield and the tightly focused geometry of the laser beam play important roles. A large number of the background electrons are self-injected into the acceleration phase of the wakefield during the defocusing of the tightly focused laser beam as it propagates through an underdense plasma. Particle-in-cell simulations performed using a 2D3V code have shown generation of a collimated electron bunch with a total number of 1.4 x 109 and energies up to 8 MeV. (C) 2005 American Institute of Physics.
Resumo:
We investigate the characteristics of Gaussian beams reflected and transmitted from a uniaxial crystal slab with an arbitrary orientation of its optical axis. The formulas of the total electric and magnetic fields inside and outside the slab are derived by use of Maxwell's equations and by matching the boundary conditions at the interfaces. Numerical simulations are presented and the field values as well as the power densities are computed. Negative refractions are demonstrated when the beam is transmitted through a uniaxial crystal slab. Beam splitting of the reflected beam is observed and is explained by the resonant transmission for plane waves. Dependences of the lateral shift on the incident angle and beam width are discussed. Negative and positive lateral shifts are observed due to the spatial anisotropic properties.