947 resultados para atom interferometry
Resumo:
The Bohr Model for the Hydrogen Atom's electron is discussed in detail, with a recapitulation of angular momentum and a detailed discussion of relevant units (out of the cgs system).
Resumo:
Slightly advanced problems in Physical Chemistry, herein concerning the H-atom and the Hydrogen Molecular Cation, are presented and discussed.
Resumo:
In teaching elementary quantum chemistry, the concept of eigenfunctionality is explored using the H-atom's Hamiltonian and various guessed functions. This is done in Cartesian coordinates, in Spherical Polar coordinates, and in Confocal Elliptical coordinates.
Resumo:
arukh u-metukan ʿal-yede Ḥayim Berodi ... Meʾir Ṿiner
Resumo:
The potential for the direct analysis of enzyme reactions by fast atom bombardment (FAB) mass spectrometry has been investigated. Conditions are presented for the maintenance of enzymatic activity under FAB conditions along with FAB mass spectrometric data showing that these conditions can be applied to solutions of enzyme and substrate to follow enzymatic reactions inside the mass spectrometer in real-time. In addition, enzyme kinetic behavior under FAB mass spectrometric conditions is characterized using trypsin and its assay substrate, TAME, as an enzyme-substrate reaction model. These results show that two monitoring methods can be utilized to follow reactions by FAB mass spectrometry. The advantages of each method are discussed and illustrated by obtaining kinetic parameters from the direct analysis of enzyme reactions with assay or peptide substrates. ^
Resumo:
Speed enforcement on public roadways is an important issue in order to guarantee road security and to reduce the number and seriousness of traffic accidents. Traditionally, this task has been partially solved using radar and/or laser technologies and, more recently, using video-camera based systems. All these systems have significant shortcomings that have yet to be overcome. The main drawback of classical Doppler radar technology is that the velocity measurement fails when several vehicles are in the radars beam. Modern radar systems are able to measure speed and range between vehicle and radar. However, this is not enough to discriminate the lane where the vehicle is driving on. The limitation of several vehicles in the beam is overcome using laser technology. However, laser systems have another important limitation: They cannot measure the speed of several vehicles simultaneously. Novel video-camera systems, based on license plate identification, solve the previous drawbacks, but they have the problem that they can only measure average speed but never top-speed. This paper studies the feasibility of using an interferometric linear frequency modulated continuous wave radar to improve top-speed enforcement on roadways. Two different systems based on down-the-road and across-the-road radar configurations are presented. The main advantage of the proposed solutions is they can simultaneously measure speed, range, and lane of several vehicles, allowing the univocal identification of the offenders. A detailed analysis about the operation and accuracy of these solutions is reported. In addition, the feasibility of the proposed techniques has been demonstrated with simulations and real experiments using a Ka-band interferometric radar developed by our research group.
Resumo:
The residue environment in protein structures is studied with respect to the density of carbon (C), oxygen (O), and nitrogen (N) atoms within a certain distance (say 5 Å) of each residue. Two types of environments are evaluated: one based on side-chain atom contacts (abbreviated S-S) and the other based on all atom (side-chain + backbone) contacts (abbreviated A-A). Different atom counts are observed about nine-residue structural categories defined by three solvent accessibility levels and three secondary structure states. Among the structural categories, the S-S atom count ratios generally vary more than the A-A atom count ratios because of the fact that the backbone (O) and (N) atoms contribute equal counts. Secondary structure affects the (C) density for the A-A contacts whereas secondary structure has little influence on the (C) density for the S-S contacts. For S-S contacts, a greater density of (O) over (N) atom neighbors stands out in the environment of most amino acid types. By contrast, for A-A contacts, independent of the solvent accessibility levels, the ratio (O)/(N) is ≈1 in helical states, consistent with the geometry of α-helical residues whose side-chains tilt oppositely to the amino to carboxy α-helical axis. The highest ratio of neighbor (O)/(N) is achieved under solvent exposed conditions. This (O) vs. (N) prevalence is advantageous at the protein surface that generally exhibits an acid excess that helps to enhance protein solubility in the cell and to avoid nonspecific interactions with phosphate groups of DNA, RNA, and other plasma constituents.
Resumo:
The last 2 decades have seen discoveries in highly excited states of atoms and molecules of phenomena that are qualitatively different from the “planetary” model of the atom, and the near-rigid model of molecules, characteristic of these systems in their low-energy states. A unified view is emerging in terms of approximate dynamical symmetry principles. Highly excited states of two-electron atoms display “molecular” behavior of a nonrigid linear structure undergoing collective rotation and vibration. Highly excited states of molecules described in the “standard molecular model” display normal mode couplings, which induce bifurcations on the route to molecular chaos. New approaches such as rigid–nonrigid correlation, vibrons, and quantum groups suggest a unified view of collective electronic motion in atoms and nuclear motion in molecules.
Resumo:
Very-long-baseline radio interferometry (VLBI) imaging surveys have been undertaken since the late 1970s. The sample sizes were initially limited to a few tens of objects but the snapshot technique has now allowed samples containing almost 200 sources to be studied. The overwhelming majority of powerful compact sources are asymmetric corejects of one form or another, most of which exhibit apparent superluminal motion. However 5-10% of powerful flat-spectrum sources are 100-parsec (pc)-scale compact symmetric objects; these appear to form a continuum with the 1-kpc-scale double-lobed compact steep-spectrum sources, which make up 15-20% of lower frequency samples. It is likely that these sub-galactic-size symmetric sources are the precursors to the large-scale classical double sources. There is a surprising peak around 90 degrees in the histogram of misalignments between the dominant source axes on parsec and kiloparsec scales; this seems to be associated with sources exhibiting a high degree of relativistic beaming. VLBI snapshot surveys have great cosmological potential via measurements of both proper motion and angular size vs. redshift as well as searches for gravitational "millilensing."
Resumo:
The parsec scale properties of low power radio galaxies are reviewed here, using the available data on 12 Fanaroff-Riley type I galaxies. The most frequent radio structure is an asymmetric parsec-scale morphology--i.e., core and one-sided jet. It is shared by 9 (possibly 10) of the 12 mapped radio galaxies. One (possibly 2) of the other galaxies has a two-sided jet emission. Two sources are known from published data to show a proper motion; we present here evidence for proper motion in two more galaxies. Therefore, in the present sample we have 4 radio galaxies with a measured proper motion. One of these has a very symmetric structure and therefore should be in the plane of the sky. The results discussed here are in agreement with the predictions of the unified scheme models. Moreover, the present data indicate that the parsec scale structure in low and high power radio galaxies is essentially the same.
Resumo:
VLBI observations of the extremely gamma-bright blazar PKS 0528+134 at 8, 22, 43, and 86 GHz reveal a strongly bent one-sided-core jet structure with at least three moving and two apparently stationary jet components. At the highest observing frequencies the brightest and most compact jet component (the VLBI core) is unresolved with an upper limit to its size of approximately 50 microarcsec corresponding to approximately 0.2 parsec [H0 = 100 km.s-1.Mpc-1 (megaparsec-1), q0 = 0.5, where H0 is Hubble constant and q0 is the deceleration parameter]. Two 86-GHz VLBI observations performed in 1993.3 and 1994.0 reveal a new jet component emerging with superluminal speed from the core. Linear back-extrapolation of its motion yields strong evidence that the ejection of this component is related to an outburst in the millimeter regime and a preceding intense flare of the gamma-flux density observed in early 1993. This and the radio/optical "light curves" and VLBI data for two other sources (S5 0836+710 and 3C 454.3) suggest that the observed gamma-radiation might be Doppler-boosted and perhaps is closely related to the physical processes acting near the "base" of the highly relativistic jets observed in quasars.
Resumo:
Systematic differences in the very long baseline interferometry (VLBI) radio polarization structure and average VLBI component speeds of BL Lacertae objects and quasars support the view that the observational distinction between these classes, based in large part on the strength of their optical line emission, is meaningful; in other words, this distinction reflects significant differences in the physical conditions in these sources. Possible models providing a link between the optical and VLBI properties of BL Lacertae objects and quasars are discussed. Most VLBI polarization observations to date have been global observations made at 6 cm; recent results suggest that the VLBI polarization structure of some sources may change dramatically on scales smaller than those probed by these 6-cm observations.
Resumo:
This work presents a forensic analysis of buildings affected by mining subsidence, which is based on deformation data obtained by Differential Interferometry (DInSAR). The proposed test site is La Union village (Murcia, SE Spain) where subsidence was triggered in an industrial area due to the collapse of abandoned underground mining labours occurred in 1998. In the first part of this work the study area was introduced, describing the spatial and temporal evolution of ground subsidence, through the elaboration of a cracks map on the buildings located within the affected area. In the second part, the evolution of the most significant cracks found in the most damaged buildings was monitored using biaxial extensometric units and inclinometers. This article describes the work performed in the third part, where DInSAR processing of satellite radar data, available between 1998 and 2008, has permitted to determine the spatial and temporal evolution of the deformation of all the buildings of the study area in a period when no continuous in situ instrumental data is available. Additionally, the comparison of these results with the forensic data gathered in the 2005–2008 period, reveal that there is a coincidence between damaged buildings, buildings where extensometers register significant movements of cracks, and buildings deformation estimated from radar data. As a result, it has been demonstrated that the integration of DInSAR data into forensic analysis methodologies contributes to improve significantly the assessment of the damages of buildings affected by mining subsidence.
Optical probing of spin fluctuations of a single paramagnetic Mn atom in a semiconductor quantum dot
Resumo:
We analyzed the photoluminescence intermittency generated by a single paramagnetic spin localized in an individual semiconductor quantum dot. The statistics of the photons emitted by the quantum dot reflect the quantum fluctuations of the localized spin interacting with the injected carriers. Photon correlation measurements, which are reported here, reveal unique signatures of these fluctuations. A phenomenological model is proposed to quantitatively describe these observations, allowing a measurement of the spin dynamics of an individual magnetic atom at zero magnetic field. These results demonstrate the existence of an efficient spin-relaxation channel arising from a spin exchange with individual carriers surrounding the quantum dot. A theoretical description of a spin-flip mechanism involving spin exchange with surrounding carriers gives relaxation times in good agreement with the measured dynamics.
Resumo:
We report on the reversible electrical control of the magnetic properties of a single Mn atom in an individual quantum dot. Our device permits us to prepare the dot in states with three different electric charges, 0, +1e, and -1e which result in dramatically different spin properties, as revealed by photoluminescence. Whereas in the neutral configuration the quantum dot is paramagnetic, the electron-doped dot spin states are spin rotationally invariant and the hole-doped dot spins states are quantized along the growth direction.