987 resultados para air transport
Resumo:
Objectives: Children with cleft palate (CP) have a high prevalence of sinusitis. Considering that nasal mucus properties play a pivotal role in the upper airway defense mechanism, the aim of the study was to evaluate nasal mucus transportability and physical properties from children with CP. Setting: Hospital for Rehabilitation of Craniofacial Anomalies, School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil and Laboratory of Experimental Air Pollution, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil. Methods: Nasal mucus samples were collected by nasal aspiration from children with CP and without CP (non-CP). Sneeze clearance (SC) was evaluated by the simulated sneeze machine. In vitro mucus transportability (MCT) by cilia was evaluated by the frog palate preparation. Mucus physical surface properties were assessed by measuring the contact angle (CA). Mucus rheology was determined by means of a magnetic rheometer, and the results were expressed as log G* (vectorial sum of viscosity and elasticity) and tan delta (relationship between viscosity and elasticity) measured at 1 and 100 rad/s. Results: Mucus samples from children with CP had a higher SC than non-CP children (67 +/- 30 and 41 +/- 24 mm, respectively, p < 0.05). Mucus samples from children with CP had a lower CA (24 +/- 16 degrees and 35 +/- 11 degrees, p < 0.05) and a higher tan delta 100 (0.79 +/- 0.24 and 0.51 +/- 0.12, p < 0.05) than non-CP children. There were no significant differences in mucus MCT, log G* 1, tan delta 1 and log G* 100 obtained for CP and non-CP children. Conclusions: Nasal mucus physical properties from children with CP are associated with higher sneeze transportability. The high prevalence of sinusitis in children with CP cannot be explained by changes in mucus physical properties and transportability. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background. Potassium (K) deficiency (KD) and/or hypokalemia have been associated with disturbances of phosphate metabolism The purpose of the present study was to determine the cellular mechanisms that mediate the impairment of renal proximal tubular Na/Pi cotransport in a model of K deficiency in the rat. Methods. K deficiency in the rat was achieved by feeding rats a K-deficient diet for seven days. which resulted in a marked decrease in serum and tissue K content. Results. K deficiency resulted in a marked increase in urinary Pi excretion and a decrease in the V-max of brush-border membrane (BBM) Na/Pi cotransport activity (1943 95 in control vs. 1183 +/- 99 pmol/5 sec/mg BBM protein in K deficiency. P < 0.02). Surprisingly. the decrease in Na/Pi cotransport activity was associated with increases in the abundance of type I (NaPi-1). and type II (NaPi-2) and type III (Glvr-1) Na/Pi protein. The decrease in Na/Pi transport was associated with significant alterations in BBM lipid composition, including increases in sphingomyelin. glucosylceramide. and ganglioside GM, content and a decrease in BBM lipid fluidity. Inhibition of glucosylceramide synthesis resulted in increases in BBM Na/Pi cotransport activity in control and K-deficient rats. The resultant Na/Pi cotransport activity in K-deficit nt rats was the same as in control rats (1148 +/- 52 in control + PDMP vs. 11.52 +/- 61 pmol/5 sec/mg BBM protein in K deficiency + PDMP). These changes in transport activity occurred independent of further changes in BBM NaPi-2 protein or renal cortical NaPi-2 mRNA abundance. Conclusion. K deficiency in the rat causes inhibition of renal Na/Pi cotransport activity by post-translational mechanisms that are mediated in part through alterations in glucosylceramide content and membrane lipid dynamics.
Resumo:
1. More than 1300 different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF), a disease characterized by deficient epithelial Cl- secretion and enhanced Na+ absorption. The clinical course of the disease is determined by the progressive lung disease. Thus, novel approaches in pharmacotherapy are based primarily on correction of the ion transport defect in the airways. 2. The current therapeutic strategies try to counteract the deficiency in Cl- secretion and the enhanced Na+ absorption. A number of compounds have been identified, such as genistein and xanthine derivatives, which directly activate mutant CFTR. Other compounds may activate alternative Ca2+-activated Cl- channels or basolateral K+ channels, which supply the driving force for Cl- secretion. Apart from that, Na+ channel blockers, such as phenamil and benzamil, are being explored, which counteract the hyperabsorption of NaCl in CF airways. 3. Clinical trials are under way using purinergic compounds such as the P2Y(2) receptor agonist INS365. Activation of P2Y(2) receptors has been found to both activate Cl- secretion and inhibit Na+ absorption. 4. The ultimate goal is to recover Cl- channel activity of mutant CFTR by either enhancing synthesis and expression of the protein or by activating silent CFTR Cl- channels. Strategies combining these drugs with compounds facilitating Cl- secretion and inhibiting Na+ absorption in vivo may have the best chance to counteract the ion transport defect in cystic fibrosis.
Resumo:
The oxidation of two fluorinated polyimides containing phenylphosphine oxide units, TOR-RC and TOR-RC ODPA, have been studied at 300 K for treatment by a water plasma and gamma -radiolysis in air. The changes in the O 1s/C 1s ratios obtained from x-ray photoelectron spectroscopy (XPS) analysis showed that for exposure to the water plasma the ratio increases at short exposure times and then levels to a constant value. Evidence for the formation of phosphate species was also obtained from the XPS analyses. Similar observations were made for gamma -radiolysis of the polymers in air. The polymers containing phenylphosphine oxide were found to be more resistant to oxidation in the water plasma than Kapton(R). Radiolysis of the polymers in air to high doses were also accompanied by a red shift in the visible absorption spectra.
Resumo:
Glutamate is the major excitatory neurotransmitter in the retina and is removed from the extracellular space by an energy-dependent process involving neuronal and glial cell transporters. The radial glial Muller cells express the glutamate transporter, GLAST, and preferentially accumulate glutamate. However, during an ischaemic episode, extracellular glutamate concentrations may rise to excitotoxic levels. Is this catastrophic rise in extracellular glutamate due to a failure of GLAST? Using immunocytochemistry, we monitored the transport of the glutamate transporter substrate, D-aspartate, in the retina under normal and ischaemic conditions. Two models of compromised retinal perfusion were compared: (1) Anaesthetised rats had their carotid arteries occluded for 7 days to produce a chronic reduction in retinal blood flow. Retinal function was assessed by electroretinography. D-aspartate was injected into the eye for 45 min, Following euthanasia, the retina was processed for D-aspartate. GLAST and glutamate immunocytochemistry. Although reduced retinal perfusion suppresses the electroretinogram b-wave, neither retinal histology, GLAST expression, nor the ability of Muller cells to uptake D-aspartate is affected. As this insult does not appear to cause excitotoxic neuronal damage, these data suggest that GLAST function and glutamate clearance are maintained during periods of reduced retinal perfusion. (2) Occlusion of the central retinal artery for 60 min abolishes retinal perfusion, inducing histological damage and electroretinogram suppression. Although GLAST expression appears to be normal. its ability to transport D-aspartate into Muller cells is greatly reduced. Interestingly, D-aspartate is transported into neuronal cells, i.e. photoreceptors, bipolar and ganglion cells. This suggests that while GLAST is vitally important for the clearance of excess extracellular glutamate, its capability to sustain inward transport is particularly susceptible to an acute ischaemic attack. Manipulation of GLAST function could alleviate the degeneration and blindness that result from ischaemic retinal disease. (C) 2001 Elsevier Science Ltd, All rights reserved.
Resumo:
Many non-steroidal anti-inflammatory drugs (NSAIDs) which form acyl glucuronide conjugates as major metabolites have shown an antiproliferative effect on colorectal tumors. This study assesses the extent to which rearrangement of an acyl glucuronide metabolite of a model NSAID into beta -glucuronidase-resistant isomers facilitates its passage through the small intestine to reach the colon. Rats were dosed orally with diflunisal (DF), its acyl glucuronide (DAG) and a mixture of rearrangement isomers (iso-DAG) at 10 mg DF equivalents/kg. The parent drug DF appeared in plasma after all doses, with maximum concentrations of 20.5 +/- 2.5, 28.8 +/- 8.3 and 11.0 +/- 1.6 mug DF/ml respectively, obtained at 3.8 +/- 0.3, 3.6 +/- 1.8 and 7.5 +/- 0.9 hr after the DF, DAG and iso-DAG doses respectively. At 48 hr, 16.2 +/- 3.3, 19.8 +/- 0.8 and 42.9 +/- 10.1% of the doses respectively were recovered in feces, with less than or equal to 1% remaining in the intestine. About half of each dose was recovered as DF and metabolites in 48 hr urine: for DF and DAG doses, the majority was in the first 24 hr urine. whereas for iso-DAG doses, recoveries in the first and second 24 hr periods were similar. The results show that hydrolysis of both DAG and iso-DAG, and absorption of liberated DF, occur during passage through the gut, but that these processes occur more slowly and to a lesser degree for iso-DAG. The intrinsic hydrolytic capacities of various intestinal segments (including contents) towards DAG and iso-DAG were obtained by incubating homogenates under saturating concentrations of DAG/iso-DAG at 37 degreesC. Upper small intestine, lower small intestine, caecum and colon released 2400, 3200, 9200 and 22800 mug DF/hr/g tissue plus contents respectively from DAG substrate, and 18, 10, 140 and 120 mug DF/hr/g tissue plus contents respectively from iso-DAG substrate. The much greater resistance of iso-DAG to hydrolysis appears attributable to its resistance to beta -glucuronidases. The data suggest that in rats dosed with DF, DAG excreted in bile would be substantially hydrolysed in the small intestine and liberated DF reabsorbed, but that portion which rearranges to iso-DAG would likely reach the colon. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Contaminant transport in coastal aquifers is complicated partly due to the conditions at the seaward boundary including seawater intrusion and tidal variations of sea level. Their inclusion in modelling this system will be computationally expensive. Therefore, it will be instructive to investigate the consequence of simplifying the seaward boundary condition by neglecting the seawater density and tidal variations in numerical predictions of contaminant transport in this zone. This paper presents a comparison of numerical predictions for a simplified seaward boundary condition with experimental results for a corresponding realistic one including a saltwater interface and tidal variations. Different densities for contaminants are considered. The comparison suggests that the neglect of the seawater intrusion and tidal variations does not affect noticeably the overall migration rate of the plume before it reaches the saltwater interface. However, numerical prediction shows that a more dense contaminant travels further seaward and part of the solute mass exits under the sea if the seawater density is not included. This is not consistent with the experimental result, which shows that the contaminant travels upwards to the shoreline along the saltwater interface. Neglect of seawater density, therefore, will result in an underestimation of the exit rate of solute mass around the coastline and fictitious migration paths under the seabed. For a less dense contaminant, neglect of seawater density has little effect on numerical prediction of migration paths. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This review provides an overview of surface diffusion and capillary condensate flow in porous media. Emphasis has been placed on the distinction between purely surface diffusion, multilayer surface diffusion, and, capillary condensate flow.
Resumo:
In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about 0.8-0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement is found to be very good in the light that there is no fitting parameter in the model. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
New Zealand is generally thought to have been physically isolated from the rest of the world for over 60 million years. But physical isolation may not mean biotic isolation, at least on the time scale of millions of years. Are New Zealand's present complement of plants the direct descendants of what originally rafted from Gondwana? Or has there been total extinction of this initial flora with replacement through long-distance dispersal (a complete biotic turnover)? These are two possible extremes which have come under recent discussion. Can the fossil record be used to decide the relative importance of the two endpoints, or is it simply too incomplete and too dependent on factors of chance? This paper suggests two approaches to the problem-the use of statistics to apply levels of confidence to first appearances in the fossil record and the analysis of trends based on the entire palynorecord. Statistics can suggest that the first appearance of a taxon was after New Zealand broke away from Gondwana-as long as the first appearance in the record was not due to an increase in biomass from an initially rare state. Two observations can be drawn from the overall palynorecord that are independent of changes in biomass: (1) The first appearance of palynotaxa common to both Australia and New Zealand is decidedly non-random. Most taxa occur first in Australia. This suggests a bias in air or water transport from west to east. (2) The percentage of endemic palynospecies in New Zealand shows no simple correlation with the time New Zealand drifted into isolation. The conifer macrorecord also hints at complete turnover since the Cretaceous.
Resumo:
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined.
Resumo:
Early endosomal antigen I (EEAI) is known to be a marker of early endosomes and in cultured hippocampal neurons it preferentially localizes to the dendritic but not the axonal compartment. We show in cultured dorsal root ganglia and superior cervical ganglia neurons that EEAI localizes to the cell bodies and the neurites of both sensory and sympathetic neurons. We then show in vivo using a ligated rat sciatic nerve that EEAI significantly accumulates on the proximal side and not on the distal side of the ligation. This suggests that EEAI is transported in the anterograde direction in axons either as part of the homeostatic process or to the nerve ligation site in response to nerve injury. NeuroReport 12:281-284 (C) 2001 Lippincott Williams & Wilkins.