914 resultados para additive noise
Resumo:
This paper proposes a new iterative algorithm for OFDM joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the problem of "overfitting" such that the iterative approach may converge to a trivial solution. Although it is essential for this joint approach, the overfitting problem was relatively less studied in existing algorithms. In this paper, specifically, we apply a hard decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the phase noise, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical simulations are also given to verify the proposed algorithm.
Resumo:
The two major applications of microwave remote sensors are radiometer and radar. Because of its importance and the nature of the application, much research has been made on the various aspects of the radar. This paper will focus on the various aspects of the radiometer from a design point of view and the Low Noise Amplifier will be designed and implemented. The paper is based on a study in radio Frequency Communications engineering and understanding of electronic and RF circuits. Some research study about the radiometer and practical implementation of Low Noise Amplifier for Radiometer will be the main focus of this paper. Basically the paper is divided into two parts. In the first part some background study about the radiometer will be carried out and commonly used types of radiometer will be discussed. In the second part LNA for the radiometer will be designed.
OFDM joint data detection and phase noise cancellation based on minimum mean square prediction error
Resumo:
This paper proposes a new iterative algorithm for orthogonal frequency division multiplexing (OFDM) joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the relatively less studied problem of "overfitting" such that the iterative approach may converge to a trivial solution. Specifically, we apply a hard-decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the PHN, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical Simulations are also given to verify the proposed algorithm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This correspondence proposes a new algorithm for the OFDM joint data detection and phase noise (PHN) cancellation for constant modulus modulations. We highlight that it is important to address the overfitting problem since this is a major detrimental factor impairing the joint detection process. In order to attack the overfitting problem we propose an iterative approach based on minimum mean square prediction error (MMSPE) subject to the constraint that the estimated data symbols have constant power. The proposed constrained MMSPE algorithm (C-MMSPE) significantly improves the performance of existing approaches with little extra complexity being imposed. Simulation results are also given to verify the proposed algorithm.
Resumo:
Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.
Resumo:
Electrospinning is a route to polymer fibres with diameters considerably smaller than available from most fibre-producing techniques. We explore the use of a low molecular weight compound as an effective control additive during the electrospinning of poly(epsilon-caprolactone). This approach extends the control variables for the electrospinning of nanoscale fibres from the more usual ones such as the polymer molecular weight, solvent and concentration. We show that through the use of dual solvent systems, we can alter the impact of the additive on the electrospinning process so that finer as well as thicker fibres can be prepared under otherwise identical conditions. As well as the size of the fibres and the number of beads, the use of the additive allows us to alter the level of crystallinity as well as the level of preferred orientation of the poly(epsilon-caprolactone) crystals. This approach, involving the use of a dual solvent and a low molar mass compound, offers considerable potential for application to other polymer systems. (C) 2010 Society of Chemical Industry
Resumo:
This study investigates the price effects of environmental certification on commercial real estate assets. It is argued that there are likely to be three main drivers of price differences between certified and noncertified buildings. These are additional occupier benefits, lower holding costs for investors and a lower risk premium. Drawing upon the CoStar database of U.S. commercial real estate assets, hedonic regression analysis is used to measure the effect of certification on both rent and price. The results suggest that, compared to buildings in the same submarkets, eco-certified buildings have both a rental and sale price premium.
Resumo:
The level set method is commonly used to address image noise removal. Existing studies concentrate mainly on determining the speed function of the evolution equation. Based on the idea of a Canny operator, this letter introduces a new method of controlling the level set evolution, in which the edge strength is taken into account in choosing curvature flows for the speed function and the normal to edge direction is used to orient the diffusion of the moving interface. The addition of an energy term to penalize the irregularity allows for better preservation of local edge information. In contrast with previous Canny-based level set methods that usually adopt a two-stage framework, the proposed algorithm can execute all the above operations in one process during noise removal.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.
Resumo:
In this paper,the Prony's method is applied to the time-domain waveform data modelling in the presence of noise.The following three problems encountered in this work are studied:(1)determination of the order of waveform;(2)de-termination of numbers of multiple roots;(3)determination of the residues.The methods of solving these problems are given and simulated on the computer.Finally,an output pulse of model PG-10N signal generator and the distorted waveform obtained by transmitting the pulse above mentioned through a piece of coaxial cable are modelled,and satisfactory results are obtained.So the effectiveness of Prony's method in waveform data modelling in the presence of noise is confirmed.