962 resultados para action potential


Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the amyloid hypothesis, Alzheimer’s disease (AD) is caused by aberrant production or clearance of the amyloid-β (Aβ) peptides, and in particular of the longer more aggregation-prone Aβ42. The Aβ peptides are generated through successive proteolytic cleavage of the amyloid precursor protein (APP) by the β-site APP cleaving enzyme (BACE) and γ-secretase. γ-secretase produces Aβ peptides with variable C-termini ranging from Aβ34 to Aβ48, presumably by sequential trimming of longer into shorter peptides. γ-secretase is a multiprotein complex consisting of at least four different proteins and the presenilin proteins (PS1 or PS2) contain the catalytic center of the complex. In 2001 several non-steroidal anti-inflammatory drugs were identified as the founding members of a new class of γ-secretase modulators (GSMs) that can selectively reduce production of Aβ42. Concomitantly, these GSMs increase Aβ38 production indicating closely coordinated generation of Aβ42 and Aβ38 and a potential precursor-product relationship between these peptides. GSMs seem to exert their activity by direct modulation of γ-secretase. Support for this hypothesis is drawn from the finding that some PS mutations associated with early-onset familial AD (FAD) can modulate the cellular response to GSMs and to γ-secretase inhibitors (GSIs), which inhibit production of all Aβ peptides and are known to directly interact with PS. A particularly interesting FAD PS mutation is PS1-ΔExon9, a complex deletion mutant that blocks endoproteolysis of PS1 and renders cells completely non-responsive to GSMs. Studies presented in this thesis show that the diminished response of PS1-ΔExon9 to GSMs is mainly caused by its lack of endoproteolytic cleavage. Furthermore, we were able to demonstrate that a reduced response to GSMs and GSIs is not limited to PS1-ΔExon9 but is a common effect of aggressive FAD-associated PS1 mutations. Surprisingly, we also found that while the Aβ42 response to GSMs is almost completely abolished by these PS1 mutations, the accompanying Aβ38 increase was indistinguishable to wild-type PS1. Finally, the reduced response to GSIs was confirmed in a mouse model with transgenic expression of an aggressive FAD-associated PS1 mutation as a highly potent GSI failed to reduce Aβ42 levels in brain of these mice. Taken together, our findings provide clear evidence for independent generation of Aβ42 and Aβ38 peptides, and argue that the sequential cleavage model might be an oversimplification of the molecular mechanism of γ-secretase. Most importantly, our results highlight the significance of genetic background in drug discovery efforts aimed at γ-secretase, and indicate that the use of cellular models with transgenic expression of FAD-associated PS mutations might confound studies of the potency and efficacy of GSMs and GSIs. Therefore, such models should be strictly avoided in the ongoing preclinical development of these promising and potentially disease-modifying therapeutics for AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Among all cancer types leukemia represents the leading cause of cancer death in man younger than 40 years. Single-target drug therapy has generally been highly ineffective in treating complex diseases such as cancer. A growing interest has been directed toward multi-target drugs able to hit multiple targets. In this context, plant products, based on their intrinsic complexity, could represent an interesting and promising approach. Aim of the research followed during my PhD was to indentify and study novel natural compounds for the treatment of acute leukemias. Two potential multi-target drugs were identified in Hemidesmus indicus and piperlongumine. Methodology/Principal Findings: A variety of cellular assays and flow cytometry were performed on different cell lines. We demonstrated that Hemidesmus modulates many components of intracellular signaling pathways involved in cell viability and proliferation and alters gene and protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential, raise of [Ca2+]i, inhibition of Mcl-1, increasing Bax/Bcl-2 ratio, and ROS formation. Moreover, we proved that the decoction causes differentiation of HL-60 and regulates angiogenesis of HUVECs in hypoxia and normoxia, by the inhibition of new vessel formation and the processes of migration/invasion. Clinically relevant observations are that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemia (AML) patients. Moreover, both Hemidesmus and piperlongumine showed a selective action toward leukemic stem cell (LSC). Conclusions: Our results indicate the molecular basis of the anti-leukemic effects of Hemidesmus indicus and indentify the mitochondrial pathways, [Ca2+]i, cytodifferentiation and angiogenesis inhibition as crucial actors in its anticancer activity. The ability to selectively hit LSC showed by Hemidesmus and piperlongumine enriched the knowledge of their anti-leukemic activity. On these bases, we conclude that Hemidesmus and piperlongumine can represent a valuable strategy in the anticancer pharmacology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test the hypothesis that muscle fibers are depolarized in patients with chronic renal failure, by measuring velocity recovery cycles of muscle action potentials as indicators of muscle membrane potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinal isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g., Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3beta (GSK-3beta), which is a putative target of manzamines. On the basis of the results presented here, it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary Various authors have shown that the caries decline in the industrialized countries during recent decades is based on the use of fluorides, of which local fluoride application in the form of fluoridated toothpastes is of primary importance. The caries-protective potential of fluorapatite is quite low; in contrast, dissolved fluorides in the vicinity of enamel are effective both in promoting remineralization and inhibiting demineralization. Considering the fact that the caries decline occurred at the same time that local fluoridation measures became widely used, the conclusion seems justified that regular application of F⁻ can inhibit caries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Splanchnic vasodilation is an essential disturbance in portal hypertension. Increased systemic sympathetic nerve activity is well known, but potential corresponding vascular desensitization is incompletely characterized. Release of splanchnic sympathetic neurotransmitters noradrenaline (NA) and co-transmitter neuropeptide Y (NPY) remains to be elucidated. Finally, the effects of exogenous NPY on these mechanisms are unexplored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none of the GFLs affected soma size of GABA-ir neurons. In contrast, only NRTN treatment significantly increased 5-HT-ir cells densities at 10 ng/ml (1.3-fold), while an augmentation was seen for GDNF and PSPN at 100 ng/ml (2.4-fold and 1.7-fold, respectively). ARTN had no effect on 5-HT-ir cell densities. Morphological analysis of 5-HT-ir neurons revealed a significant increase of soma size, number of primary neurites/neuron and neurite length/neuron after GDNF exposure, while PSPN only affected soma size, and NRTN and ARTN failed to exert any effect. In conclusion, we identified GFLs as effective neurotrophic factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was undertaken to test whether recovery cycle measurements can provide useful information about the membrane potential of human muscle fibers. Multifiber responses to direct muscle stimulation through needle electrodes were recorded from the brachioradialis of healthy volunteers, and the latency changes measured as conditioning stimuli were applied at interstimulus intervals of 2-1000 ms. In all subjects, the relative refractory period (RRP), which lasted 3.27 +/- 0.45 ms (mean +/- SD, n = 12), was followed by a phase of supernormality, in which the velocity increased by 9.3 +/- 3.4% at 6.1 +/- 1.3 ms, and recovered over 1 s. A broad hump of additional supernormality was seen at around 100 ms. Extra conditioning stimuli had little effect on the early supernormality but increased the later component. The two phases of supernormality resembled early and late afterpotentials, attributable respectively to the passive decay of membrane charge and potassium accumulation in the t-tubules. Five minutes of ischemia progressively prolonged the RRP and reduced supernormality, confirming that these parameters are sensitive to membrane depolarization. Velocity recovery cycles may provide useful information about altered muscle membrane potential and t-tubule function in muscle disease. Muscle Nerve, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB(1) receptor is predominantly expressed in neurons but is also co-expressed with the CB(2) receptor in peripheral tissues. In recent years, CB receptor ligands, including Delta(9)-tetrahydrocannabinol, have been proposed as potential anticancer agents. KEY FINDINGS: This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB(1) and CB(2) receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels. SUMMARY: The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB(2)-selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB(1) receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1-[(3’-Diethylaminopropyl)-3-(substitutedphenylmethylene) pyrrolidines] were synthe-sized and evaluated for CQ resistant reversal activity. The compounds of the series elicit better biological response than their phenyl methyl analogues in general. The most active compound 4b has been evaluated in vivo in details and the results are presented. The possible mode of action of the compounds of this series is by inhibition of the enzyme heme oxygenase, thereby increasing the levels of heme and hemozoin, which are lethal to the parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The past decade has witnessed a period of intense economic globalisation. The growing significance of international trade, investment, production and financial flows appears to be curtailing the autonomy of individual nation states. In particular, globalisation appears to be encouraging, if not demanding, a decline in social spending and standards. However, many authors believe that this thesis ignores the continued impact of national political and ideological pressures and lobby groups on policy outcomes. In particular, it has been argued that national welfare consumer and provider groups remain influential defenders of the welfare state. For example, US aged care groups are considered to be particularly effective defenders of social security pensions. According to this argument, governments engaged in welfare retrenchment may experience considerable electoral backlash (Pierson 1996; Mishra 1999). Yet, it is also noted that governments can take action to reduce the impact of such groups by reducing their funding, and their access to policy-making and consultation processes. These actions are then justified on the basis of removing potential obstacles to economic competitiveness (Pierson 1994; Melville 1999).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurons in Action (NIA1, 2000; NIA1.5, 2004; NIA2, 2007), a set of tutorials and linked simulations, is designed to acquaint students with neuronal physiology through interactive, virtual laboratory experiments. Here we explore the uses of NIA in lecture, both interactive and didactic, as well as in the undergraduate laboratory, in the graduate seminar course, and as an examination tool through homework and problem set assignments. NIA, made with the simulator NEURON (http://www.neuron.yale.edu/neuron/), displays voltages, currents, and conductances in a membrane patch or signals moving within the dendrites, soma and/or axon of a neuron. Customized simulations start with the plain lipid bilayer and progress through equilibrium potentials; currents through single Na and K channels; Na and Ca action potentials; voltage clamp of a patch or a whole neuron; voltage spread and propagation in axons, motoneurons and nerve terminals; synaptic excitation and inhibition; and advanced topics such as channel kinetics and coincidence detection. The user asks and answers "what if" questions by specifying neuronal parameters, ion concentrations, and temperature, and the experimental results are then plotted as conductances, currents, and voltage changes. Such exercises provide immediate confirmation or refutation of the student's ideas to guide their learning. The tutorials are hyperlinked to explanatory information and to original research papers. Although the NIA tutorials were designed as a sequence to empower a student with a working knowledge of fundamental neuronal principles, we find that faculty are using the individual tutorials in a variety of educational situations, some of which are described here. Here we offer ideas to colleagues using interactive software, whether NIA or another tool, for educating students of differing backgrounds in the subject of neurophysiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report on The Potential of Mode of Action (MoA) Information Derived from Non-testing and Screening Methodologies to Support Informed Hazard Assessment, resulted from a workshop organised within OSIRIS (Optimised Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-test and Test Information), a project partly funded by the EU Commission within the Sixth Framework Programme. The workshop was held in Liverpool, UK, on 30 October 2008, with 35 attendees. The goal of the OSIRIS project is to develop integrated testing strategies (ITS) fit for use in the REACH system, that would enable a significant increase in the use of non-testing information for regulatory decision making, and thus minimise the need for animal testing. One way to improve the evaluation of chemicals may be through categorisation by way of mechanisms or modes of toxic action. Defining such groups can enhance read-across possibilities and priority settings for certain toxic modes or chemical structures responsible for these toxic modes. Overall, this may result in a reduction of in vivo testing on organisms, through combining available data on mode of action and a focus on the potentially most-toxic groups. In this report, the possibilities of a mechanistic approach to assist in and guide ITS are explored, and the differences between human health and environmental areas are summarised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.