964 resultados para acidification
Resumo:
The oceans take up more than 1 million tons of CO2 from the air per hour, about one-quarter of the anthropogenically released amount, leading to disrupted seawater chemistry due to increasing CO2 emissions. Based on the fossil fuel-intensive CO2 emission scenario (A1F1; Houghton et al., 2001), the H+ concentration or acidity of surface seawater will increase by about 150% (pH drop by 0.4) by the end of this century, the process known as ocean acidification (OA; Sabine et al., 2004; Doney et al., 2009; Gruber et al., 2012). Seawater pH is suggested to decrease faster in the coastal waters than in the pelagic oceans due to the interactions of hypoxia, respiration, and OA (Cai et al., 2011). Therefore, responses of coastal algae to OA are of general concern, considering the economic and social services provided by the coastal ecosystem that is adjacent to human living areas and that is dependent on coastal primary productivity. On the other hand, dynamic environmental changes in the coastal waters can interact with OA (Beardall et al., 2009).
Resumo:
The combined impacts of future scenarios of ocean acidification and global warming on the larvae of a cold-eurythermal spider crab, Hyas araneus L., were investigated in one of its southernmost populations (living around Helgoland, southern North Sea, 54°N) and one of the northernmost populations (Svalbard, North Atlantic, 79°N). Larvae were exposed at temperatures of 3, 9 and 15°C to present day normocapnia (380 ppm CO2) and to CO2 conditions expected for the near or medium-term future (710 ppm by 2100 and 3000 ppm CO2 by 2300 and beyond). Larval development time and biochemical composition were studied in the larval stages Zoea I, II, and Megalopa. Permanent differences in instar duration between both populations were detected in all stages, likely as a result of evolutionary temperature adaptation. With the exception of Zoea II at 3°C and under all CO2 conditions, development in all instars from Svalbard was delayed compared to those from Helgoland, under all conditions. Most prominently, development was much longer and fewer specimens morphosed to the first crab instar in the Megalopa from Svalbard than from Helgoland. Enhanced CO2 levels (710 and particularly 3000 ppm), caused extended duration of larval development and reduced larval growth (measured as dry mass) and fitness (decreasing C/N ratio, a proxy of the lipid content). Such effects were strongest in the zoeal stages in Svalbard larvae, and during the Megalopa instar in Helgoland larvae.
Resumo:
Ocean acidification (OA), induced by rapid anthropogenic CO2 rise and its dissolution in seawater, is known to have consequences for marine organisms. However, knowledge on the evolutionary responses of phytoplankton to OA has been poorly studied. Here we examined the coccolithophore Gephyrocapsa oceanica, while growing it for 2000 generations under ambient and elevated CO2 levels. While OA stimulated growth in the earlier selection period (from generations 700 to 1550), it reduced it in the later selection period up to 2000 generations. Similarly, stimulated production of particulate organic carbon and nitrogen reduced with increasing selection period and decreased under OA up to 2000 generations. The specific adaptation of growth to OA disappeared in generations 1700 to 2000 when compared with that at 1000 generations. Both phenotypic plasticity and fitness decreased within selection time, suggesting that the species' resilience to OA decreased after 2000 generations under high CO2 selection.
Resumo:
Phenotypic plasticity describes the phenotypic adjustment of the same genotype to different environmental conditions and is best described by a reaction norm. We focus on the effect of ocean acidification (OA) on inter - and intraspecific reaction norms of three globally important phytoplankton species (Emiliania huxleyi, Gephyrocapsa oceanica, Chaetoceros affinis). Despite significant differences in growth rates between the species, they all showed a high potential for phenotypic buffering (no significant difference in growth rates between ambient and high CO2 condition). Only three coccolithophore genotypes showed a reduced growth in high CO2. Largely diverging responses to high CO2 of single coc-colithophore genotypes compared to the respective mean species responses, however, raise the question if an extrapolation to the population level is possible from single genotype experiments. We therefore compared the mean response of all tested genotypes to a total species response comprising the same genotypes, which was not significantly different in the coccolithophores. Assessing species reac-tion norm to different environmental conditions on short time scale in a genotype-mix could thus reduce sampling effort while increasing predictive power.
Resumo:
Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (epsilon p) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light (LL) and high-light (HL) conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures (LN) and nitrogen-replete batches (HN). The observed CO2-dependency of epsilon p remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL epsilon p was consistently lower by about 2.7 per mil over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of epsilon p disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher epsilon p under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent epsilon p under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect epsilon p, thereby illustrating the need to carefully consider prevailing environmental conditions.
Resumo:
Since the industrial revolution, [CO2]atm has increased from 280 µatm to levels now exceeding 380 µatm and is expected to rise to 730-1,020 µatm by the end of this century. The consequent changes in the ocean's chemistry (e.g., lower pH and availability of the carbonate ions) are expected to pose particular problems for marine organisms, especially in the more vulnerable early life stages. The aim of this study was to investigate how the future predictions of ocean acidification may compromise the metabolism and swimming capabilities of the recently hatched larvae of the tropical dolphinfish (Coryphaena hippurus). Here, we show that the future environmental hypercapnia (delta pH 0.5; 0.16 % CO2, ~1,600 µatm) significantly (p < 0.05) reduced oxygen consumption rate up to 17 %. Moreover, the swimming duration and orientation frequency also decreased with increasing pCO2 (50 and 62.5 %, respectively). We argue that these hypercapnia-driven metabolic and locomotory challenges may potentially influence recruitment, dispersal success, and the population dynamics of this circumtropical oceanic top predator.
Resumo:
Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure.
Resumo:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-10-12.
Resumo:
The tolerance and physiological responses of the larvae of two congeneric gastropods, the intertidal Nassarius festivus and subtidal Nassarius conoidalis, to the combined effects of ocean acidification (PCO2 at 380, 950, 1250 ppm), temperature (15, 30 degrees C) and salinity (10, 30 psu) were compared. Results of three-way ANOVA on cumulative mortality after 72-h exposure showed significant interactive effects in which mortality increased with pCO(2) and temperature, but reduced at higher salinity for both species, with higher mortality being obtained for N. conoidalis. Similarly, respiration rate of the larvae increased with temperature and pCO(2) level for both species, with a larger percentage increase for N. conoidalis. Larval swimming speed increased with temperature and salinity for both species whereas higher pCO(2) reduced swimming speed in N. conoidalis but not N. festivus. The present findings indicated that subtidal congeneric species are more sensitive than their intertidal counterparts to the combined effects of these stressors. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Increasing atmospheric carbon dioxide (CO2) concentrations are expectedto decrease surface ocean pH by 0.3-0.5 units by 2100, lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to calcify has remained elusive, however, as measuring net calcification fails to disentangle the relative contributions of gross calcification and dissolution rates on growth. Here, we show that corals and molluscs transplanted along gradients of carbonate saturation state at Mediterranean CO2 vents are able to calcify and grow at even faster than normal rates when exposed to the high CO2 levels projected for the next 300 years. Calcifiers remain at risk, however, owing to the dissolution of exposed shells and skeletons that occurs as pH levels fall. Our results show that tissues and external organic layers play a major role in protecting shells and skeletons from corrosive sea water, limiting dissolution and allowing organisms to calcify. Our combined field and laboratory results demonstrate that the adverse effects of global warming are exacerbated when high temperatures coincide with acidification.
Resumo:
The growth and development of the aragonitic CaCO3 otoliths of teleost fish could be vulnerable to processes resulting from ocean acidification. The potential effects of an increase in atmospheric CO2 on the calcification of the otoliths were investigated by rearing Atlantic cod Gadus morhua L. larvae in 3 pCO2 concentrations-control (370 µatm), medium (1800 µatm) and high (4200 µatm)-from March to May 2010. Increased otolith growth was observed in 7 to 46 d post hatch (dph) cod larvae at elevated pCO2 concentrations. The sagittae and lapilli were usually largest in the high pCO2 treatment followed by the medium and control treatments. The greatest difference in mean otolith surface area (normalized to fish length) was for sagittae at 11 dph, with medium and high treatments being 46 and 43% larger than the control group, respectively. There was no significant pCO2 effect on the shape of the otoliths nor were there any trends in the fluctuating asymmetry, defined as the difference between the right and left sides, in relation to the increase in otolith growth from elevated pCO2.
Resumo:
Ocean acidification, caused by increasing atmospheric concentrations of CO2, is one of the most critical anthropogenicthreats to marine life. Changes in seawater carbonate chemistry have the potential to disturb calcification, acid-base regulation, blood circulation and respiration, as well as the nervous system of marine organisms, leading to long-term effects such as reduced growth rates and reproduction. In teleost fishes, early life-history stages are particularly vulnerable as they lack specialized internal pH regulatory mechanisms. So far, impacts of relevant CO2concentrations on larval fish have been found in behaviour and otolith size, mainly in tropical, non-commercial species. Here we show detrimental effects of ocean acidification on the development of a mass-spawning fish species of high commercial importance. We reared Atlantic cod larvae at three levels of CO2, (1) present day, (2) end of next century and (3) an extreme, coastal upwelling scenario, in a long-term ( 2.5 1/2 months) mesocosm experiment. Exposure to CO2 resulted in severe to lethal tissue damage in many internal organs, with the degree of damage increasing with CO2 concentration. As larval survival is the bottleneck to recruitment, ocean acidification has the potential to act as an additional source of natural mortality, affecting populations of already exploited fish stocks.
Egg and early larval stages of Baltic cod, Gadus morhua duirng ocean acidification experiments, 2012
Resumo:
The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive, due to the lack of gills with specialized ion-regulatory mechanisms. We tested the effects of OA on growth and development of embryos and larvae of eastern Baltic cod, the commercially most important fish stock in the Baltic Sea. Cod were reared from newly fertilized eggs to early non-feeding larvae in 5 different experiments looking at a range of response variables to OA, as well as the combined effect of CO2 and temperature. No effect on hatching, survival, development, and otolith size was found at any stage in the development of Baltic cod. Field data show that in the Bornholm Basin, the main spawning site of eastern Baltic cod, in situ levels of pCO2are already at levels of 1,100 µatm with a pH of 7.2, mainly due to high eutrophication supporting microbial activity and permanent stratification with little water exchange. Our data show that the eggs and early larval stages of Baltic cod seem to be robust to even high levels of OA (3,200 µatm), indicating an adaptational response to CO2.
Resumo:
The physical and chemical environment around corals, as well as their physiology, can be affected by interactions with neighboring corals. This study employed small colonies (4 cm diameter) of Pocillopora verrucosa and Acropora hyacinthus configured in spatial arrays at 7 cm/s flow speed to test the hypothesis that ocean acidification (OA) alters interactions among them. Interaction effects were quantified for P. verrucosa using three measures of growth: calcification (i.e., weight), horizontal growth, and vertical growth. The study was carried out in May-June 2014 using corals from 10 m depth on the outer reef of Moorea, French Polynesia. Colonies of P. verrucosa were placed next to conspecifics or heterospecifics (A. hyacinthus) in arrangements of two or four colonies (pairs and aggregates) that were incubated at ambient and high pCO2 (1000 µatm) for 28 days. There was an effect of pCO2, and arrangement type on multivariate growth (utilizing the three measures of growth), but no interaction between the main effects. Conversely, arrangement and pCO2 had an interactive effect on calcification, with an overall 23 % depression at high pCO2 versus ambient pCO2 (i.e., pooled among arrangements). Within arrangements, there was a 34-45 % decrease in calcification for solitary and paired conspecifics, but no effect in conspecific aggregates, heterospecific pairs, or heterospecific aggregates. Horizontal growth was negatively affected by pCO2 and arrangement type, while vertical growth was positively affected by arrangement type. Together, our results show that conspecific aggregations can mitigate the negative effects of OA on calcification of colonies within an aggregation.