800 resultados para Wireless NEMCA
Resumo:
Wireless Mesh Networks (WMN) have proven to be a key technology for increased network coverage of Internet infrastructures. The development process for new protocols and architectures in the area of WMN is typically split into evaluation by network simulation and testing of a prototype in a test-bed. Testing a prototype in a real test-bed is time-consuming and expensive. Irrepressible external interferences can occur which makes debugging difficult. Moreover, the test-bed usually supports only a limited number of test topologies. Finally, mobility tests are impractical. Therefore, we propose VirtualMesh as a new testing architecture which can be used before going to a real test-bed. It provides instruments to test the real communication software including the network stack inside a controlled environment. VirtualMesh is implemented by capturing real traffic through a virtual interface at the mesh nodes. The traffic is then redirected to the network simulator OMNeT++. In our experiments, VirtualMesh has proven to be scalable and introduces moderate delays. Therefore, it is suitable for predeployment testing of communication software for WMNs.
Resumo:
This paper studies the energy-efficiency and service characteristics of a recently developed energy-efficient MAC protocol for wireless sensor networks in simulation and on a real sensor hardware testbed. This opportunity is seized to illustrate how simulation models can be verified by cross-comparing simulation results with real-world experiment results. The paper demonstrates that by careful calibration of simulation model parameters, the inevitable gap between simulation models and real-world conditions can be reduced. It concludes with guidelines for a methodology for model calibration and validation of sensor network simulation models.
Resumo:
Opportunistic routing (OR) takes advantage of the broadcast nature and spatial diversity of wireless transmission to improve the performance of wireless ad-hoc networks. Instead of using a predetermined path to send packets, OR postpones the choice of the next-hop to the receiver side, and lets the multiple receivers of a packet to coordinate and decide which one will be the forwarder. Existing OR protocols choose the next-hop forwarder based on a predefined candidate list, which is calculated using single network metrics. In this paper, we propose TLG - Topology and Link quality-aware Geographical opportunistic routing protocol. TLG uses multiple network metrics such as network topology, link quality, and geographic location to implement the coordination mechanism of OR. We compare TLG with well-known existing solutions and simulation results show that TLG outperforms others in terms of both QoS and QoE metrics.