977 resultados para Wigner-Brillouin perturbation theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to its implosion. In the direct-drive approach, the energy needed to spark fusion reactions is delivered by the irradiation of laser beams that leads to the ablation of the outer shell of the target (the so-called ablator). As a reaction to this ablation process, the target is accelerated inwards, and, provided that this implosion is sufficiently strong a symmetric, the requirements of temperature and pressure in the center of the target are achieved leading to the ignition of the target (fusion). One of the obstacles capable to prevent appropriate target implosions takes place in the ablation region where any perturbation can grow even causing the ablator shell break, due to the ablative Rayleigh-Taylor instability. The ablative Rayleigh-Taylor instability has been extensively studied throughout the last 40 years in the case where the density/temperature profiles in the ablation region present a single front (the ablation front). Single ablation fronts appear when the ablator material has a low atomic number (deuterium/tritium ice, plastic). In this case, the main mechanism of energy transport from the laser energy absorption region (low density plasma) to the ablation region is the electron thermal conduction. However, recently, the use of materials with a moderate atomic number (silica, doped plastic) as ablators, with the aim of reducing the target pre-heating caused by suprathermal electrons generated by the laser-plasma interaction, has demonstrated an ablation region composed of two ablation fronts. This fact appears due to increasing importance of radiative effects in the energy transport. The linear theory describing the Rayleigh-Taylor instability for single ablation fronts cannot be applied for the stability analysis of double ablation front structures. Therefore, the aim of this thesis is to develop, for the first time, a linear stability theory for this type of hydrodynamic structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theory is developed of an electrostatic probe in a fully-ionized plasma in the presence of a strong magnetic field. The ratio of electron Larmor radius to probe transverse dimension is assumed to be small. Poisson's equation, together with kinetic equations for ions and electrons are considered. An asymptotic perturbation method of multiple scales is used by considering the characteristic lengths appearing in the problem. The leading behavior of the solution is found. The results obtained appear to apply to weaker fields also, agreeing with the solutions known in the limit of no magnetic field. The range of potentials for wich results are presented is limited. The basic effects produced by the field are a depletion of the plasma near the probe and a non-monotonic potential surrounding the probe. The ion saturation current is not changed but changes appear in both the floating potential Vf and the slope of the current-voltage diagram at Vf. The transition region extends beyond the space potential Vs,at wich point the current is largely reduced. The diagram does not have an exponential form in this region as commonly assumed. There exists saturation in electron collection. The extent to which the plasma is disturbed is determined. A cylindrical probe has no solution because of a logarithmic singularity at infinity. Extensions of the theory are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta tesis se aborda el estudio del proceso de isomerización del sistema molecular LiNC/LiCN tanto aislado como en presencia de un pulso láser aplicando la teoría del estado de transición (TST). Esta teoría tiene como pilar fundamental el hecho de que el conocimiento de la dinámica en las proximidades de un punto de silla de la superficie de energía potencial permite determinar los parámetros cinéticos de la reacción objeto de estudio. Históricamente, existen dos formulaciones de la teoría del estado de transición, la versión termodinámica de Eyring (Eyr38) y la visión dinámica de Wigner (Wig38). Ésta última ha sufrido recientemente un amplio desarrollo, paralelo a los avances en sistemas dinámicos que ha dado lugar a una formulación geométrica en el espacio de fases que sirve como base al trabajo desarrollado en esta tesis. Nos hemos centrado en abordar el problema desde una visión fundamentalmente práctica, ya que la teoría del estado de transición presenta una desventaja: su elevado coste computacional y de tiempo de cálculo. Dos han sido los principales objetivos de este trabajo. El primero de ellos ha sido sentar las bases teóricas y computacionales de un algoritmo eficiente que permita obtener las magnitudes fundamentales de la TST. Así, hemos adaptado con éxito un algoritmo computacional desarrollado en el ámbito de la mecánica celeste (Jor99), obteniendo un método rápido y eficiente para la obtención de los objetos geométricos que rigen la dinámica en el espacio de fases y que ha permitido calcular magnitudes cinéticas tales como el flujo reactivo, la densidad de estados de reactivos y productos y en última instancia la constante de velocidad. Dichos cálculos han sido comparados con resultados estadísticos (presentados en (Mül07)) lo cual nos ha permitido demostrar la eficacia del método empleado. El segundo objetivo de esta tesis, ha sido la evaluación de la influencia de los parámetros de un pulso electromagnético sobre la dinámica de reacción. Para ello se ha generalizado la metodología de obtención de la forma normal del hamiltoniano cuando el sistema químico es alterado mediante una perturbación temporal periódica. En este caso el punto fijo inestable en cuya vecindad se calculan los objetos geométricos de interés para la aplicación de la TST, se transforma en una órbita periódica del mismo periodo que la perturbación. Esto ha permitido la simulación de la reactividad en presencia de un pulso láser. Conocer el efecto de esta perturbación posibilita el control de la reactividad química. Además de obtener los objetos geométricos que rigen la dinámica en una cierta vecindad de la órbita periódica y que son la clave de la TST, se ha estudiado el efecto de los parámetros del pulso sobre la reactividad en el espacio de fases global así como sobre el flujo reactivo que atraviesa la superficie divisoria que separa reactivos de productos. Así, se ha puesto de manifiesto, que la amplitud del pulso es el parámetro más influyente sobre la reactividad química, pudiendo producir la aparición de flujos reactivos a energías inferiores a las de aparición del sistema aislado y el aumento del flujo reactivo a valores constantes de energía inicial. ABSTRACT We have studied the isomerization reaction LiNC/LiCN isolated and perturbed by a laser pulse. Transition State theory (TST) is the main tool we have used. The basis of this theory is knowing the dynamics close to a fixed point of the potential energy surface. It is possible to calculate kinetic magnitudes by knowing the dynamics in a neighbourhood of the fixed point. TST was first formulated in the 30's and there were 2 points of view, one thermodynamical by Eyring (Eyr38) and another dynamical one by Wigner (Wig38). The latter one has grown lately due to the growth of the dynamical systems leading to a geometrical view of the TST. This is the basis of the work shown in this thesis. As the TST has one main handicap: the high computational cost, one of the main goals of this work is to find an efficient method. We have adapted a methodology developed in the field of celestial mechanics (Jor99). The result: an efficient, fast and accurate algorithm that allows us to obtain the geometric objects that lead the dynamics close to the fixed point. Flux across the dividing surface, density of states and reaction rate coefficient have been calculated and compared with previous statistical results, (Mül07), leading to the conclusion that the method is accurate and good enough. We have widen the methodology to include a time dependent perturbation. If the perturbation is periodic in time, the fixed point becomes a periodic orbit whose period is the same as the period of the perturbation. This way we have been able to simulate the isomerization reaction when the system has been perturbed by a laser pulse. By knowing the effect of that perturbation we will be able to control the chemical reactivity. We have also studied the effect of the parameters on the global phase space dynamics and on the flux across the dividing surface. It has been prove that amplitude is the most influent parameter on the reaction dynamics. Increasing amplitude leads to greater fluxes and to some flux at energies it would not if the systems would not have been perturbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BASING their work on a linear theory, Evvard1 and Krasilshchikova2'3 independently developed an expression that yields the perturbation generated by a thiri lifting wing of arbitrary planform flying at supersonic speed on a point placed on the wing plane inside its planform,1 or both on and above the wing plane.2 This point must be influenced by two leading edges, one supersonic and the other partially subsonic. Although these authors followed different approaches, their methods concur in showing the existence of a perfectly defined cancellation zone. In this Note, the Evvard approach is generalized to the case solved by Krasilshchikova. Circumventing the latter's lengthy and somewhat complex approach, Evvard's simple method seems to be useful at least for educational purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Issued in 11 pts., 1833-1861.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new edition, 1834 (x, 115, [1], 15, xxxii p.) forms the first part of the author's treatise on this subject, issued in 10 parts, 1834-61.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine the equilibrium states of finite amplitude flow in a horizontal fluid layer with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau constants and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infinitesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighborhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable. © 2009 The Physical Society of Japan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine the equilibrium states of periodic finite amplitude flow in a horizontal channel with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau coefficients and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infini- tesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighbourhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently introduced Surface Nanoscale Axial Photonics (SNAP) is based on whispering gallery modes circulating around the optical FIber surface and undergoing slow axial propagation. In this paper we develop the theory of propagation of whispering gallery modes in a SNAP microresonator, which is formed by nanoscale asymmetric perturbation of the FIber translation symmetry and called here a nanobump microresonator. The considered modes are localized near a closed stable geodesic situated at the FIber surface. A simple condition for the stability of this geodesic corresponding to the appearance of a high Q-factor nanobump microresonator is found. The results obtained are important for engineering of SNAP devices and structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (40% – 1993). ** Supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (40% – 1993).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most experiments in particle physics are scattering experiments, the analysis of which leads to masses, scattering phases, decay widths and other properties of one or multi-particle systems. Until the advent of Lattice Quantum Chromodynamics (LQCD) it was difficult to compare experimental results on low energy hadron-hadron scattering processes to the predictions of QCD, the current theory of strong interactions. The reason being, at low energies the QCD coupling constant becomes large and the perturbation expansion for scattering; amplitudes does not converge. To overcome this, one puts the theory onto a lattice, imposes a momentum cutoff, and computes the integral numerically. For particle masses, predictions of LQCD agree with experiment, but the area of decay widths is largely unexplored. ^ LQCD provides ab initio access to unusual hadrons like exotic mesons that are predicted to contain real gluonic structure. To study decays of these type resonances the energy spectra of a two-particle decay state in a finite volume of dimension L can be related to the associated scattering phase shift δ(k) at momentum k through exact formulae derived by Lüscher. Because the spectra can be computed using numerical Monte Carlo techniques, the scattering phases can thus be determined using Lüscher's formulae, and the corresponding decay widths can be found by fitting Breit-Wigner functions. ^ Results of such a decay width calculation for an exotic hybrid( h) meson (JPC = 1-+) are presented for the decay channel h → πa 1. This calculation employed Lüscher's formulae and an approximation of LQCD called the quenched approximation. Energy spectra for the h and πa1 systems were extracted using eigenvalues of a correlation matrix, and the corresponding scattering phase shifts were determined for a discrete set of πa1 momenta. Although the number of phase shift data points was sparse, fits to a Breit-Wigner model were made, resulting in a decay width of about 60 MeV. ^