970 resultados para Wide-Area Measurements
Resumo:
The objective of this study was to develop equations to predict retail product and fat trim (weights and percentages) for Nellore (Bos indicus) cattle. Live ultrasound measurements of the longissimus muscle area, backfat thickness at the 12th rib and rump fat depth and shrunk body weight were obtained from 218 Nellore steers to predict weights and percentages of carcass retail product, pistola retail product and fat trimmings. After slaughter, carcasses were deboned and weighed and percentages of retail cuts were obtained directly. Measurements taken directly in the carcasses explained 97% and 36% of variation in carcass retail product weight and percentage, and 94% and 36% of variation in pistola retail weight and percentage, respectively. Live measurements explained 93% of carcass retail product weight and 39% of carcass retail product percentage. Lower accuracies were observed for pistola retail product weight (R-2=0.87) and percentage (R-2=0.33). Accuracies for fat trimmings weight and percentage were 79% and 55%, respectively. Ultrasound rump fat thickness showed greater correlations with retail product and fat trimmings (weights and percentages) when compared with ultrasound backfat thickness. The weight and percentage of retail products and of trimmable fat can be estimated in Nellore steers from live animal measurements, with similar accuracy to equations developed based on carcass measurements obtained at slaughter.
Resumo:
Objective: The present study aimed to investigate the individual and family determinants of being overweight among children younger than 10 years of age. Design: Cross-sectional survey. Direct data on children's age, food intake, physical activity, type of transportation used and anthropometric measurements, as well as the education level of the mothers, were collected by trained interviewers. Setting: Population-based study in the city of Santos, Brazil. Subjects: A total of 531 children under 10 years of age (302 aged <6 years, >= 6 aged years), living in the city of Santos. Results: The overall prevalence of overweight and obesity (BMI-for-age Z-score >1) was 35.4% for children under 6 years and 38.9% for children aged 6-10 years. The socio-economic status of the family was associated with being overweight for both age groups. Logistic regression analysis showed that the lower the socio-economic status, the higher the likelihood of being overweight, among both younger children (OR = 7.73; P = 0.02) and older children (OR = 1.98; P = 0.04). The use of active transportation was associated with a lower likelihood of being overweight, but only among younger children (OR = 1.70; P = 0.05). Conclusions: Socio-economic status seems to be an important individual-level determinant of overweight in children. Public policies should consider promoting the use of active transportation, as the results showed it to have a positive effect on reducing overweight issues. The high prevalence of overweight in younger children suggests that this age group should be a priority in health-promoting interventions.
Resumo:
The present study sought to assess nasal respiratory function in adult patients with maxillary constriction who underwent surgically assisted rapid maxillary expansion (SARME) and to determine correlations between orthodontic measurements and changes in nasal area, volume, resistance, and airflow. Twenty-seven patients were assessed by acoustic rhinometry, rhinomanometry, orthodontic measurements, and use of a visual analogue scale at three time points: before surgery; after activation of a preoperatively applied palatal expander; and 4 months post-SARME. Results showed a statistically significant increase (p < 0.001) in all orthodontic measurements. The overall area of the nasal cavity increased after surgery (p < 0.036). The mean volume increased between assessments, but not significantly. Expiratory and inspiratory flow increased over time (p < 0.001). Airway resistance decreased between assessments (p < 0.004). Subjective analysis of the feeling of breathing exclusively through the nose increased significantly from one point in time to the next (p < 0.05). There was a statistical correlation between increased arch perimeter and decreased airway resistance. Respiratory flow was the only variable to behave differently between sides. The authors conclude that the SARME procedure produces major changes in the oral and nasal cavity; when combined, these changes improve patients' quality of breathing.
Resumo:
Optical properties of intentionally disordered multiple quantum well (QW) system embedded in a wide AlGaAs parabolic well were investigated by photoluminescence (PL) measurements as functions of the laser excitation power and the temperature. The characterization of the carriers localized in the individual wells was allowed due to the artificial disorder that caused spectral separation of the photoluminescence lines emitted by different wells. We observed that the photoluminescence peak intensity from each quantum well shifted to high energy as the excitation power was increased. This blue-shift is associated with the filling of localized states in the valence band tail. We also found that the dependence of the peak intensity on the temperature is very sensitive to the excitation power. The temperature dependence of the photoluminescence peak energy from each QW was well fitted using a model that takes into account the thermal redistribution of the localized carriers. Our results demonstrate that the band tails in the studied structures are caused by alloy potential fluctuations and the band tail states dominate the emission from the peripheral wells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730769]
Resumo:
Recently high spectral resolution sensors have been developed, which allow new and more advanced applications in agriculture. Motivated by the increasing importance of hyperspectral remote sensing data, the need for research is important to define optimal wavebands to estimate biophysical parameters of crop. The use of narrow band vegetation indices (VI) derived from hyperspectral measurements acquired by a field spectrometer was evaluated to estimate bean (Phaseolus vulgaris L.) grain yield, plant height and leaf area index (LAI). Field canopy reflectance measurements were acquired at six bean growth stages over 48 plots with four water levels (179.5; 256.5; 357.5 and 406.2 mm) and tree nitrogen rates (0; 80 and 160 kg ha-1) and four replicates. The following VI was analyzed: OSNBR (optimum simple narrow-band reflectivity); NB_NDVI (narrow-band normalized difference vegetation index) and NDVI (normalized difference index). The vegetation indices investigated (OSNBR, NB_NDVI and NDVI) were efficient to estimate LAI, plant height and grain yield. During all crop development, the best correlations between biophysical variables and spectral variables were observed on V4 (the third trifoliolate leaves were unfolded in 50 % of plants) and R6 (plants developed first flowers in 50 % of plants) stages, according to the variable analyzed.
Resumo:
Observing high-energy gamma-rays from Active Galactic Nuclei (AGN) offers a unique potential to probe extremely tiny values of the intergalactic magnetic field (IGMF), a long standing question of astrophysics, astropa rticle physics and cosmology. Very high energy (VHE) photons from blazars propagating along the line of sight interact with the extragalactic background light (EBL) and produce e + e − pairs. Through inverse-Compton interaction, mainly on the cosmic microwave background (CMB), these pairs generate secondary GeV-TeV compo- nents accompanying the primary VHE signal. Such secondary components would be detected in the gamma-ray range as delayed “pair echos” for very weak IGMF ( B< 10 − 16 G ), while they should result in a spatially extended ga mma-ray emission around the source for higher IGMF values ( B> 10 − 16 G ). Coordinated observations with space (i.e. Fermi) and ground- based gamma-ray instruments, such as the pre sent Cherenkov experiments H.E.S.S., MAGIC and VERITAS, the future Cherenkov Telescope Array (CTA) Observatory, and the wide-field detectors such as HAWC and LHAASO, should allow to analyze and finally detect such echos, extended emission or pair halos, and to further characterize the IGMF.
Resumo:
Rationale: The primary function of surfactant is to reduce the surface tension at air-liquid interface. In this study, the surface tension behavior of two commercial surfactants, poractant alfa (ChiesiFarmaceuticals,ltaly) and beractant (Abbott Laboratories,USA), were evaluated,using new parameters. Methods: We used a Langmuir film balance (Minitrough,KSV lnstruments,Finland) to measure of surface tension of both poractant alfa and beractant samples. For both samples,we prepared a solution of 1 mg/mdl dissolved in chloroform. The solution (1uL) was applied over a subphase of milli-Q water (175 ml) in the chamber of the balance. The chamber has two moving barriers that can change its surface area between a maximum value of 112.5 cm2 anda minimum value of 22.5 cm2, defining a balance cycle.lhree sample's films were evaluated for each sample, during 20 balance cycles. Here quantify two new variables, which is the mean hysteresis area of the measured curve surface tension of the last 16 balance cycles,defined here as Mean Work Cycle (MWC), and the moment that the surfactant is active in the surface, this measure is defined here as Active Surface Area Critical in the compression (ASACC) and the expansion (ASACE). The test was applied to compare the statistical significance of the results.
Resumo:
Electromagnetic spectrum can be identified as a resource for the designer, as well as for the manufacturer, from two complementary points of view: first, because it is a good in great demand by many different kind of applications; second, because despite its scarce availability, it may be advantageous to use more spectrum than necessary. This is the case of Spread-Spectrum Systems, those systems in which the transmitted signal is spread over a wide frequency band, much wider, in fact, than the minimum bandwidth required to transmit the information being sent. Part I of this dissertation deals with Spread-Spectrum Clock Generators (SSCG) aiming at reducing Electro Magnetic Interference (EMI) of clock signals in integrated circuits (IC) design. In particular, the modulation of the clock and the consequent spreading of its spectrum are obtained through a random modulating signal outputted by a chaotic map, i.e. a discrete-time dynamical system showing chaotic behavior. The advantages offered by this kind of modulation are highlighted. Three different prototypes of chaos-based SSCG are presented in all their aspects: design, simulation, and post-fabrication measurements. The third one, operating at a frequency equal to 3GHz, aims at being applied to Serial ATA, standard de facto for fast data transmission to and from Hard Disk Drives. The most extreme example of spread-spectrum signalling is the emerging ultra-wideband (UWB) technology, which proposes the use of large sections of the radio spectrum at low amplitudes to transmit high-bandwidth digital data. In part II of the dissertation, two UWB applications are presented, both dealing with the advantages as well as with the challenges of a wide-band system, namely: a chaos-based sequence generation method for reducing Multiple Access Interference (MAI) in Direct Sequence UWB Wireless-Sensor-Networks (WSNs), and design and simulations of a Low-Noise Amplifier (LNA) for impulse radio UWB. This latter topic was studied during a study-abroad period in collaboration with Delft University of Technology, Delft, Netherlands.
Resumo:
In the context of “testing laboratory” one of the most important aspect to deal with is the measurement result. Whenever decisions are based on measurement results, it is important to have some indication of the quality of the results. In every area concerning with noise measurement many standards are available but without an expression of uncertainty, it is impossible to judge whether two results are in compliance or not. ISO/IEC 17025 is an international standard related with the competence of calibration and testing laboratories. It contains the requirements that testing and calibration laboratories have to meet if they wish to demonstrate that they operate to a quality system, are technically competent and are able to generate technically valid results. ISO/IEC 17025 deals specifically with the requirements for the competence of laboratories performing testing and calibration and for the reporting of the results, which may or may not contain opinions and interpretations of the results. The standard requires appropriate methods of analysis to be used for estimating uncertainty of measurement. In this point of view, for a testing laboratory performing sound power measurement according to specific ISO standards and European Directives, the measurement of uncertainties is the most important factor to deal with. Sound power level measurement, according to ISO 3744:1994 , performed with a limited number of microphones distributed over a surface enveloping a source is affected by a certain systematic error and a related standard deviation. Making a comparison of measurement carried out with different microphone arrays is difficult because results are affected by systematic errors and standard deviation that are peculiarities of the number of microphones disposed on the surface, their spatial position and the complexity of the sound field. A statistical approach could give an overview of the difference between sound power level evaluated with different microphone arrays and an evaluation of errors that afflict this kind of measurement. Despite the classical approach that tend to follow the ISO GUM this thesis present a different point of view of the problem related to the comparison of result obtained from different microphone arrays.
Resumo:
This work is a detailed study of hydrodynamic processes in a defined area, the littoral in front of the Venice Lagoon and its inlets, which are complex morphological areas of interconnection. A finite element hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the coastal current patterns and the exchanges at the inlets of the Venice Lagoon. This is the first work in this area that tries to model the interaction dynamics, running together a model for the lagoon and the Adriatic Sea. First the barotropic processes near the inlets of the Venice Lagoon have been studied. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. To validate the model results, empirical flux data measured by ADCP probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modelled and measured fluxes at the inlets outlined the efficiency of the model to reproduce both tide and wind induced water exchanges between the sea and the lagoon. As a second step, also small scale processes around the inlets that connect the Venice lagoon with the Northern Adriatic Sea have been investigated by means of 3D simulations. Maps of vorticity have been produced, considering the influence of tidal flows and wind stress in the area. A sensitivity analysis has been carried out to define the importance of the advection and of the baroclinic pressure gradients in the development of vortical processes seen along the littoral close to the inlets. Finally a comparison with real data measurements, surface velocity data from HF Radar near the Venice inlets, has been performed, which allows for a better understanding of the processes and their seasonal dynamics. The results outline the predominance of wind and tidal forcing in the coastal area. Wind forcing acts mainly on the mean coastal current inducing its detachment offshore during Sirocco events and an increase of littoral currents during Bora events. The Bora action is more homogeneous on the whole coastal area whereas the Sirocco strengthens its impact in the South, near Chioggia inlet. Tidal forcing at the inlets is mainly barotropic. The sensitivity analysis shows how advection is the main physical process responsible for the persistent vortical structures present along the littoral between the Venice Lagoon inlets. The comparison with measurements from HF Radar not only permitted a validation the model results, but also a description of different patterns in specific periods of the year. The success of the 2D and the 3D simulations on the reproduction both of the SSE, inside and outside the Venice Lagoon, of the tidal flow, through the lagoon inlets, and of the small scale phenomena, occurring along the littoral, indicates that the finite element approach is the most suitable tool for the investigation of coastal processes. For the first time, as shown by the flux modeling, the physical processes that drive the interaction between the two basins were reproduced.
Resumo:
The Italian radio telescopes currently undergo a major upgrade period in response to the growing demand for deep radio observations, such as surveys on large sky areas or observations of vast samples of compact radio sources. The optimised employment of the Italian antennas, at first constructed mainly for VLBI activities and provided with a control system (FS – Field System) not tailored to single-dish observations, required important modifications in particular of the guiding software and data acquisition system. The production of a completely new control system called ESCS (Enhanced Single-dish Control System) for the Medicina dish started in 2007, in synergy with the software development for the forthcoming Sardinia Radio Telescope (SRT). The aim is to produce a system optimised for single-dish observations in continuum, spectrometry and polarimetry. ESCS is also planned to be installed at the Noto site. A substantial part of this thesis work consisted in designing and developing subsystems within ESCS, in order to provide this software with tools to carry out large maps, spanning from the implementation of On-The-Fly fast scans (following both conventional and innovative observing strategies) to the production of single-dish standard output files and the realisation of tools for the quick-look of the acquired data. The test period coincided with the commissioning phase for two devices temporarily installed – while waiting for the SRT to be completed – on the Medicina antenna: a 18-26 GHz 7-feed receiver and the 14-channel analogue backend developed for its use. It is worth stressing that it is the only K-band multi-feed receiver at present available worldwide. The commissioning of the overall hardware/software system constituted a considerable section of the thesis work. Tests were led in order to verify the system stability and its capabilities, down to sensitivity levels which had never been reached in Medicina using the previous observing techniques and hardware devices. The aim was also to assess the scientific potential of the multi-feed receiver for the production of wide maps, exploiting its temporary availability on a mid-sized antenna. Dishes like the 32-m antennas at Medicina and Noto, in fact, offer the best conditions for large-area surveys, especially at high frequencies, as they provide a suited compromise between sufficiently large beam sizes to cover quickly large areas of the sky (typical of small-sized telescopes) and sensitivity (typical of large-sized telescopes). The KNoWS (K-band Northern Wide Survey) project is aimed at the realisation of a full-northern-sky survey at 21 GHz; its pilot observations, performed using the new ESCS tools and a peculiar observing strategy, constituted an ideal test-bed for ESCS itself and for the multi-feed/backend system. The KNoWS group, which I am part of, supported the commissioning activities also providing map-making and source-extraction tools, in order to complete the necessary data reduction pipeline and assess the general system scientific capabilities. The K-band observations, which were carried out in several sessions along the December 2008-March 2010 period, were accompanied by the realisation of a 5 GHz test survey during the summertime, which is not suitable for high-frequency observations. This activity was conceived in order to check the new analogue backend separately from the multi-feed receiver, and to simultaneously produce original scientific data (the 6-cm Medicina Survey, 6MS, a polar cap survey to complete PMN-GB6 and provide an all-sky coverage at 5 GHz).
Resumo:
The present study, being part of a wide research program carried by the University of Bologna (Dipartimento di Scienze della Terra e Geo-Ambientali and Dipartimento di Archeologia) together with the Soprintendenze of Emilia-Romagna and Veneto, is aimed at examining the manufacturing and circulation of Greek Italic amphorae in the Adriatic area. This represents an essential step for the historical and archaeological reconstructions and in particular for: - the identification of local manufacturing though the archaeometric comparisons between ceramic samples and raw materials - the reconstruction of the ancient routes connecting different areas of the Roman world The examined archaeologic sites are representative of the main manufacturing areas in the Adriatic region both along the Italian and Albanian coasts: Adria, Cattolica, Rimini, Spina , Suasa and Phoinike. Notably, the Adriatic region not only represents the manufacturing area, but also coincides with the source area where the raw materials were collected. Archaeometric analyses of representative samples from the different areas of interests, were performed adapting the analytical tecniques used in mineralogy, petrography and geochemistry, to the study of ancient archaeological finds. These data were combined with the ones obtained from the analysis of clays, aimed at characterizing the nature of the raw materials. As a whole, an integration of these data with the available archaeologic observations led to significant advances in the scientific knowledge about of the main types of amphoric manufacturing and distribution in the Adriatic region. In particular, a local manufacturing is suggested for all the archaeological finds from Cattolica and for the main part of the archaeological finds from Suasa. Moreover, the occurrence of commercial routes between the sites of Rimini and Suasa and between Adria, Spina and Suasa is evidenced. On the contrary, for the amphorae from Phoinike a provenance from the examined sites is very unlikely.
Resumo:
The current design life of nuclear power plant (NPP) could potentially be extended to 80 years. During this extended plant life, all safety and operationally relevant Instrumentation & Control (I&C) systems are required to meet their designed performance requirements to ensure safe and reliable operation of the NPP, both during normal operation and subsequent to design base events. This in turn requires an adequate and documented qualification and aging management program. It is known that electrical insulation of I&C cables used in safety related circuits can degrade during their life, due to the aging effect of environmental stresses, such as temperature, radiation, vibration, etc., particularly if located in the containment area of the NPP. Thus several condition monitoring techniques are required to assess the state of the insulation. Such techniques can be used to establish a residual lifetime, based on the relationship between condition indicators and ageing stresses, hence, to support a preventive and effective maintenance program. The object of this thesis is to investigate potential electrical aging indicators (diagnostic markers) testing various I&C cable insulations subjected to an accelerated multi-stress (thermal and radiation) aging.
Resumo:
Die Verifikation numerischer Modelle ist für die Verbesserung der Quantitativen Niederschlagsvorhersage (QNV) unverzichtbar. Ziel der vorliegenden Arbeit ist die Entwicklung von neuen Methoden zur Verifikation der Niederschlagsvorhersagen aus dem regionalen Modell der MeteoSchweiz (COSMO-aLMo) und des Globalmodells des Europäischen Zentrums für Mittelfristvorhersage (engl.: ECMWF). Zu diesem Zweck wurde ein neuartiger Beobachtungsdatensatz für Deutschland mit stündlicher Auflösung erzeugt und angewandt. Für die Bewertung der Modellvorhersagen wurde das neue Qualitätsmaß „SAL“ entwickelt. Der neuartige, zeitlich und räumlich hoch-aufgelöste Beobachtungsdatensatz für Deutschland wird mit der während MAP (engl.: Mesoscale Alpine Program) entwickelten Disaggregierungsmethode erstellt. Die Idee dabei ist, die zeitlich hohe Auflösung der Radardaten (stündlich) mit der Genauigkeit der Niederschlagsmenge aus Stationsmessungen (im Rahmen der Messfehler) zu kombinieren. Dieser disaggregierte Datensatz bietet neue Möglichkeiten für die quantitative Verifikation der Niederschlagsvorhersage. Erstmalig wurde eine flächendeckende Analyse des Tagesgangs des Niederschlags durchgeführt. Dabei zeigte sich, dass im Winter kein Tagesgang existiert und dies vom COSMO-aLMo gut wiedergegeben wird. Im Sommer dagegen findet sich sowohl im disaggregierten Datensatz als auch im COSMO-aLMo ein deutlicher Tagesgang, wobei der maximale Niederschlag im COSMO-aLMo zu früh zwischen 11-14 UTC im Vergleich zu 15-20 UTC in den Beobachtungen einsetzt und deutlich um das 1.5-fache überschätzt wird. Ein neues Qualitätsmaß wurde entwickelt, da herkömmliche, gitterpunkt-basierte Fehlermaße nicht mehr der Modellentwicklung Rechnung tragen. SAL besteht aus drei unabhängigen Komponenten und basiert auf der Identifikation von Niederschlagsobjekten (schwellwertabhängig) innerhalb eines Gebietes (z.B. eines Flusseinzugsgebietes). Berechnet werden Unterschiede der Niederschlagsfelder zwischen Modell und Beobachtungen hinsichtlich Struktur (S), Amplitude (A) und Ort (L) im Gebiet. SAL wurde anhand idealisierter und realer Beispiele ausführlich getestet. SAL erkennt und bestätigt bekannte Modelldefizite wie das Tagesgang-Problem oder die Simulation zu vieler relativ schwacher Niederschlagsereignisse. Es bietet zusätzlichen Einblick in die Charakteristiken der Fehler, z.B. ob es sich mehr um Fehler in der Amplitude, der Verschiebung eines Niederschlagsfeldes oder der Struktur (z.B. stratiform oder kleinskalig konvektiv) handelt. Mit SAL wurden Tages- und Stundensummen des COSMO-aLMo und des ECMWF-Modells verifiziert. SAL zeigt im statistischen Sinne speziell für stärkere (und damit für die Gesellschaft relevante Niederschlagsereignisse) eine im Vergleich zu schwachen Niederschlägen gute Qualität der Vorhersagen des COSMO-aLMo. Im Vergleich der beiden Modelle konnte gezeigt werden, dass im Globalmodell flächigere Niederschläge und damit größere Objekte vorhergesagt werden. Das COSMO-aLMo zeigt deutlich realistischere Niederschlagsstrukturen. Diese Tatsache ist aufgrund der Auflösung der Modelle nicht überraschend, konnte allerdings nicht mit herkömmlichen Fehlermaßen gezeigt werden. Die im Rahmen dieser Arbeit entwickelten Methoden sind sehr nützlich für die Verifikation der QNV zeitlich und räumlich hoch-aufgelöster Modelle. Die Verwendung des disaggregierten Datensatzes aus Beobachtungen sowie SAL als Qualitätsmaß liefern neue Einblicke in die QNV und lassen angemessenere Aussagen über die Qualität von Niederschlagsvorhersagen zu. Zukünftige Anwendungsmöglichkeiten für SAL gibt es hinsichtlich der Verifikation der neuen Generation von numerischen Wettervorhersagemodellen, die den Lebenszyklus hochreichender konvektiver Zellen explizit simulieren.
Resumo:
This dissertation addresses the staminal lever mechanism of the genus Salvia. Various hypotheses referring to its purpose and function are tested and elucidated. The first hypothesis maintains that the lever is a mechanical selection mechanism which excludes weak pollinators from the flower. This hypothesis is refuted and the respective results of force measurements and morphological investigations are presented, statistically evaluated and discussed. The force measurements and morphological investigations were conducted on the staminal levers and flowers of 8 bee pollinated (melittophilous) and 6 bird pollinated (ornithophilous) species. For comparison a ninth melittophilous species that lacks the staminal lever was investigated. In this species the force measurements were conducted on floral structures that were suspected to hinder a flower visitor. The hypotheses, which state that the staminal lever is a tool for pollen portioning and reduces the risk of pollen loss as well as hybridisation due to its ability to perform a repeatable, accurate and species-specific pollen placement on a wide range of diverse pollinators, are confirmed. Investigations with respect to pollen portioning were carried out on 13 sages. The lever mechanism can be released several times in a row, while the pollen sacs leave a dosed pollen portion on a well defined spot on the pollinator‘s body. Pollen placement was investigated for 12 sages. In sympatric sages, lever length and the area of pollen placement are of particular interest. A shared pollinator bears species-specific areas of pollen placement for different sages. The accurate pollen placement ensures an efficient pollination. However, the question of the functionality of the lever mechanism can not be answered with absolute certainty. The lever‘s backswing is not caused by the adaxial lever arm; the adaxial lever arm is too light and too short to be an adequate counterweight to the abaxial lever arm. Therefore, the adaxial lever arm can not pull the abaxial lever arm to return it to its neutral position. But there are indications of a cellular mainspring in the filament. According to the current state of knowledge, this is the most plausible explanation for the lever's backswing, but further histological investigations on the joint of the lever mechanism are necessary to confirm this assumption.