904 resultados para Weed competition periods
Resumo:
Marijuana is the most widely used illicit drug, however its effects on cognitive functions underling safe driving remain mostly unexplored. Our goal was to evaluate the impact of cannabis on the driving ability of occasional smokers, by investigating changes in the brain network involved in a tracking task. The subject characteristics, the percentage of Δ(9)-Tetrahydrocannabinol in the joint, and the inhaled dose were in accordance with real-life conditions. Thirty-one male volunteers were enrolled in this study that includes clinical and toxicological aspects together with functional magnetic resonance imaging of the brain and measurements of psychomotor skills. The fMRI paradigm was based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. We show that cannabis smoking, even at low Δ(9)-Tetrahydrocannabinol blood concentrations, decreases psychomotor skills and alters the activity of the brain networks involved in cognition. The relative decrease of Blood Oxygen Level Dependent response (BOLD) after cannabis smoking in the anterior insula, dorsomedial thalamus, and striatum compared to placebo smoking suggests an alteration of the network involved in saliency detection. In addition, the decrease of BOLD response in the right superior parietal cortex and in the dorsolateral prefrontal cortex indicates the involvement of the Control Executive network known to operate once the saliencies are identified. Furthermore, cannabis increases activity in the rostral anterior cingulate cortex and ventromedial prefrontal cortices, suggesting an increase in self-oriented mental activity. Subjects are more attracted by intrapersonal stimuli ("self") and fail to attend to task performance, leading to an insufficient allocation of task-oriented resources and to sub-optimal performance. These effects correlate with the subjective feeling of confusion rather than with the blood level of Δ(9)-Tetrahydrocannabinol. These findings bolster the zero-tolerance policy adopted in several countries that prohibits the presence of any amount of drugs in blood while driving.
Resumo:
Selostus: Kynnöstä luopumisen ja turvelisäyksen vaikutus savimaan rikkakasvillisuuteen kevätviljakasvustossa
Resumo:
How communication systems emerge and remain stable is an important question in both cognitive science and evolutionary biology. For communication to arise, not only must individuals cooperate by signaling reliable information, but they must also coordinate and perpetuate signals. Most studies on the emergence of communication in humans typically consider scenarios where individuals implicitly share the same interests. Likewise, most studies on human cooperation consider scenarios where shared conventions of signals and meanings cannot be developed de novo. Here, we combined both approaches with an economic experiment where participants could develop a common language, but under different conditions fostering or hindering cooperation. Participants endeavored to acquire a resource through a learning task in a computer-based environment. After this task, participants had the option to transmit a signal (a color) to a fellow group member, who would subsequently play the same learning task. We varied the way participants competed with each other (either global scale or local scale) and the cost of transmitting a signal (either costly or noncostly) and tracked the way in which signals were used as communication among players. Under global competition, players signaled more often and more consistently, scored higher individual payoffs, and established shared associations of signals and meanings. In addition, costly signals were also more likely to be used under global competition; whereas under local competition, fewer signals were sent and no effective communication system was developed. Our results demonstrate that communication involves both a coordination and a cooperative dilemma and show the importance of studying language evolution under different conditions influencing human cooperation.
Resumo:
Animals can compete for resources by displaying various acoustic signals that may differentially affect the outcome of competition. We propose the hypothesis that the most efficient signal to deter opponents should be the one that most honestly reveals motivation to compete. We tested this hypothesis in the barn owl (Tyto alba) in which nestlings produce more calls of longer duration than siblings to compete for priority access to the indivisible prey item their parents will deliver next. Because nestlings increase call rate to a larger extent than call duration when they become hungrier, call rate would signal more accurately hunger level. This leads us to propose three predictions. First, a high number of calls should be more efficient in deterring siblings to compete than long calls. Second, the rate at which an individual calls should be more sensitive to variation in the intensity of the sibling vocal competition than the duration of its calls. Third, call rate should influence competitors' vocalization for a longer period of time than call duration. To test these three predictions we performed playback experiments by broadcasting to singleton nestlings calls of varying durations and at different rates. According to the first prediction, singleton nestlings became less vocal to a larger extent when we broadcasted more calls compared to longer calls. In line with the second prediction, nestlings reduced vocalization rate to a larger extent than call duration when we broadcasted more or longer calls. Finally, call rate had a longer influence on opponent's vocal behavior than call duration. Young animals thus actively and differentially use multiple signaling components to compete with their siblings over parental resources.
Resumo:
The objetive of this work was to evaluate the influence of intergenotypic competition in open-pollinated families of Eucalyptus and its effects on early selection efficiency. Two experiments were carried out, in which the timber volume was evaluated at three ages, in a randomized complete block design. Data from the three years of evaluation (experiment 1, at 2, 4, and 7 years; and experiment 2, at 2, 5, and 7 years) were analyzed using mixed models. The following were estimated: variance components, genetic parameters, selection gains, effective number, early selection efficiency, selection gain per unit time, and coincidence of selection with and without the use of competition covariates. Competition effect was nonsignificant for ages under three years, and adjustment using competition covariates was unnecessary. Early selection for families is effective; families that have a late growth spurt are more vulnerable to competition, which markedly impairs ranking at the end of the cycle. Early selection is efficient according to all adopted criteria, and the age of around three years is the most recommended, given the high efficiency and accuracy rate in the indication of trees and families. The addition of competition covariates at the end of the cycle improves early selection efficiency for almost all studied criteria.
Resumo:
Peer reviewed
Resumo:
1. Niche theory predicts that the stable coexistence of species within a guild should be associated, if resources are limited, with a mechanism of resource partitioning. Using extensive data on diets, the present study attempts: (i) to test the hypothesis that, in sympatry, the interspecific overlap between the trophic niches of the sibling bat species Myotis myotis and M. blythii-which coexist intimately in their roosts-is effectively lower than the two intraspecific overlaps; (ii) to assess the role played by interspecific competition in resource partitioning through the study of trophic niche displacement between several sympatric and allopatric populations. 2. Diets were determined by the analysis of faecal samples collected in the field from individual bats captured in various geographical areas. Trophic niche overlaps were calculated monthly for all possible intraspecific and interspecific pairs of individuals from sympatric populations. Niche breadth was estimated from: (i) every faecal sample; (ii) all the faecal samples collected per month in a given population (geographical area). 3. In every population, the bulk of the diets of M. myotis and M. blythii consisted of, respectively, terrestrial (e.g. carabid beetles) and grass-dwelling (mostly bush crickets) prey. All intraspecific trophic niche overlaps were significantly greater than the interspecific one, except in Switzerland in May when both species exploited mass concentrations of cockchafers, a non-limiting food source. This clearcut partitioning of resources may allow the stable, intimate coexistence observed under sympatric conditions. 4. Relative proportions of ground-and grass-dwelling prey, as well as niche breadths (either individual or population), did not differ significantly between sympatry and allopatry, showing that, under allopatric conditions, niche expansion does not take place. This suggests that active interspecific competition is not the underlying mechanism responsible for the niche partitioning which is currently observed between M. myotis and M. blythii.
Resumo:
Interjurisdictional competition over mobile tax bases is an easily understood mechanism, but actual tax-base elasticities are difficult to estimate. Political pressure for reducing tax rates could therefore be based on erroneous estimates of the mobility of tax bases. We show that tax competition provided the overwhelmingly dominant argument in the policy debates leading to a succession of reforms of bequest taxation by Swiss cantons. Yet, we find only very weak statistical evidence of a relationship between tax burdens on bequests and the concerned tax base of wealthy elderly individuals. Moreover, inheritance tax revenues are found to increase in inheritance tax rates even in the long run, and actual tax rates lie well below the revenue-maximising levels throughout. The alleged pressures of tax competition did not seem in reality to exist.