986 resultados para Water cooled reactors.
Resumo:
The research seeks to address the current global water crisis and the built environments effect on the increasing demand for sustainability and water security. The fundamental question in determining the correct approach for water security in the built environment is whether government regulation and legislation could provide the framework for sustainable development and the conscious shift providing that change is the only perceivable option, there is no alternative. This article will attempt to analyse the value of the neo institutional theory as a method for directing individuals and companies to conform to water saving techniques. As is highlighted throughout the article, it will be investigated whether an incentive verse punishment approach to government legislations and regulations would provide the framework required to ensure water security within the built environment. Individuals and companies make certain choices or perform certain actions not because they fear punishment or attempt to conform; neither do they do so because an action is appropriate or feels some sort of social obligation. Instead, the cognitive element of neo institutionalism suggests that individuals make certain choices because they can conceive no alternative. The research seeks to identify whether sustainability and water security can become integrated into all aspects of design and architecture through the perception that 'there is no alternative.' This report seeks to address the omission of water security in the built environment by reporting on a series of investigations, interviews, literature reviews, exemplars and statistics relating to the built environment and the potential for increased water security. The results and analysis support the conclusions that through the support of government and local council, sustainability in the built environment could be achieved and become common practice for developments. Highlighted is the approach required for water management systems integration into the built environment and how these can be developed and maintained effectively between cities, states, countries and cultures.
Resumo:
The perceived desirability of water views continues to lead to increasing numbers relocating to coastal regions. Proximity to coastal water brings with it unique risks from rising sea levels; however, water can present a risk in any area, whether or not you have water views. Recent Australian and international disasters show that even inland populations not located in traditional flood areas are not immune from water risks. The author examines the nature of these risks and shows how the internet can be used as a tool in identifying risk areas. The author also highlights the need to ensure accuracy of the data for valuation and planning purposes and identifies flaws in the current data provision.
Resumo:
Australia is a high potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage.However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional(2D numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
This body of photographic work has been created to firstly, explore a new approach to practice-led research that uses an “action genre” approach to reflective practice (Lemke) and secondly, to visually explore human interaction with the fundamental item in life - water. The first of these is based on the contention that to understand the meanings inherent in photographs we cannot look merely at the end result. It is essential to keep looking at the actions of practitioners, and the influences upon them, to determine how external influences affect the meaning potential of editorial photographs (Grayson, 2012). WATER therefore, provides an ideal platform to reflect upon the actions and influences involved in creating work within the photographic genre of photojournalism. It enables this practitioner to reflect on each stage of production to gain a better understanding of how external influences impact the narrative potential within images created. There are multi-faceted influences experienced by photographers who are creating images that, in turn, are part of constructing and presenting the narrative potential of editorial photographs. There is an important relationship between professional photographers and the technical, cultural, economic and institutional forces that impinge upon all stages of production and publication. What results is a greater understanding of technical, cultural, economic and institutional forces that impinge upon all stages of production and publication. Therefore, to understand the meanings inherent in photographs within WATER, I do not look merely at the end result. It provides a case study looking at my actions in the filed, and the influences upon me, to determine how external influences affect the meaning potential of these photographs (Grayson, 2012). As a result, this project adds to the body of scholarship around the definition of Photojournalism, how it has adapted to the current media environment and provides scope for further research into emerging new genres within editorial photography, such as citizen photojournalism. Concurrently, the photographs themselves were created to visually explore how there remains a humanistic desire to interact with the natural form of water even while living a modern cosmopolitan life around it. Taking a photojournalistic approach to exploring this phenomenon, the images were created by “capturing moments as they happened” with no posing or setting up of images. This serendipitous approach to the photographic medium provides the practitioner with at least an attempt to direct the subjectivity contained explicitly in photographs. What results is a series of images that extend the visual dialogue around the role of water within modern humanistic lifestyles and how it remains an integral part of our society’s behaviors. It captures important moments that document this relationship at this time of modern development. The resulting works were exhibited and published as part of the Head On Photo Festival, Australia's largest photo festival and the world's second largest festival in Sydney 20-24 May 2013. The WATER series of images were curated by three Magnum members; Ian Berry, Eli Reed and Chris Steele-Perkins. Magnum is a highly regarded international photographic co-operative with editorial offices in New York, London, Paris and Tokyo. There was a projection of the works as part of the official festival programme, presented to both members of the public and Sydney’s photography professionals. In addition, a sample of images from the WATER series was chosen for inclusion in the Magnum-published hardcover book. References Grayson, Louise. 2012. “Editorial photographs and patterns of practice.” Journalism Practice. Accessed: http://www.tandfonline.com/doi/abs/10.1080/17512786.2012.726836#.UbZN-L--1RQ Lemke, Jay. 1995. Textual Politics: Discourse and Social Dynamics. London: Taylor & Francis.
Resumo:
Background Mycobacterium abscessus is a rapidly growing mycobacterium responsible for progressive pulmonary disease, soft tissue and wound infections. The incidence of disease due to M. abscessus has been increasing in Queensland. In a study of Brisbane drinking water, M. abscessus was isolated from ten different locations. The aim of this study was to compare genotypically the M. abscessus isolates obtained from water to those obtained from human clinical specimens. Methods Between 2007 and 2009, eleven isolates confirmed as M. abscessus were recovered from potable water, one strain was isolated from a rainwater tank and another from a swimming pool and two from domestic taps. Seventy-four clinical isolates referred during the same time period were available for comparison using rep-PCR strain typing (Diversilab). Results The drinking water isolates formed two clusters with ≥97% genetic similarity (Water patterns 1 and 2). The tankwater isolate (WP4), one municipal water isolate (WP3) and the pool isolate (WP5) were distinctly different. Patient isolates formed clusters with all of the water isolates except for WP3. Further patient isolates were unrelated to the water isolates. Conclusion The high degree of similarity between strains of M. abscessus from potable water and strains causing infection in humans from the same geographical area, strengthens the possibility that drinking water may be the source of infection in these patients.
Resumo:
Background Nontuberculous mycobacteria (NTM) are normal inhabitants of a variety of environmental reservoirs including natural and municipal water. The aim of this study was to document the variety of species of NTM in potable water in Brisbane, QLD, with a specific interest in the main pathogens responsible for disease in this region and to explore factors associated with the isolation of NTM. One-litre water samples were collected from 189 routine collection sites in summer and 195 sites in winter. Samples were split, with half decontaminated with CPC 0.005%, then concentrated by filtration and cultured on 7H11 plates in MGIT tubes (winter only). Results Mycobacteria were grown from 40.21% sites in Summer (76/189) and 82.05% sites in winter (160/195). The winter samples yielded the greatest number and variety of mycobacteria as there was a high degree of subculture overgrowth and contamination in summer. Of those samples that did yield mycobacteria in summer, the variety of species differed from those isolated in winter. The inclusion of liquid media increased the yield for some species of NTM. Species that have been documented to cause disease in humans residing in Brisbane that were also found in water include M. gordonae, M. kansasii, M. abscessus, M. chelonae, M. fortuitum complex, M. intracellulare, M. avium complex, M. flavescens, M. interjectum, M. lentiflavum, M. mucogenicum, M. simiae, M. szulgai, M. terrae. M. kansasii was frequently isolated, but M. avium and M. intracellulare (the main pathogens responsible for disease is QLD) were isolated infrequently. Distance of sampling site from treatment plant in summer was associated with isolation of NTM. Pathogenic NTM (defined as those known to cause disease in QLD) were more likely to be identified from sites with narrower diameter pipes, predominantly distribution sample points, and from sites with asbestos cement or modified PVC pipes. Conclusions NTM responsible for human disease can be found in large urban water distribution systems in Australia. Based on our findings, additional point chlorination, maintenance of more constant pressure gradients in the system, and the utilisation of particular pipe materials should be considered.
Resumo:
It has been postulated that susceptible individuals may acquire infection with nontuberculous mycobacteria (NTM) from water and aerosol exposure. This study examined household water and shower aerosols of patients with NTM pulmonary disease. The mycobacteria isolated from clinical samples from 20 patients included M. avium (5 patients), M. intracellulare (12 patients), M. abscessus (7 patients), M. gordonae (1 patient), M. lentiflavum (1 patient), M. fortuitum (1 patient), M. peregrinum (1 patient), M. chelonae (1 patient), M. triplex (1 patient), and M. kansasii (1 patient). One-liter water samples and swabs were collected from all taps, and swimming pools or rainwater tanks. Shower aerosols were sampled using Andersen six-stage cascade impactors. For a subgroup of patients, real-time PCR was performed and high-resolution melt profiles were compared to those of ATCC control strains. Pathogenic mycobacteria were isolated from 19 homes. Species identified in the home matched that found in the patient in seven (35%) cases: M. abscessus (3 cases), M. avium (1 case), M. gordonae (1 case), M. lentiflavum (1 case), and M. kansasii (1 case). In an additional patient with M. abscessus infection, this species was isolated from potable water supplying her home. NTM grown from aerosols included M. abscessus (3 homes), M. gordonae (2 homes), M. kansasii (1 home), M. fortuitum complex (4 homes), M. mucogenicum (1 home), and M. wolinskyi (1 home). NTM causing human disease can be isolated from household water and aerosols. The evidence appears strongest for M. avium, M. kansasii, M. lentiflavum, and M. abscessus. Despite a predominance of disease due to M. intracellulare, we found no evidence for acquisition of infection from household water for this species.
Resumo:
X-ray diffraction structure functions for water flowing in a 1.5 mm diameter siphon in the temperature range 4 – 63 °C were obtained using a 20 keV beam at the Australian Synchrotron. These functions were compared with structure functions obtained at the Advanced Light Source for a 0.5 mm thick sample of water in the temperature range 1 – 77 °C irradiated with an 11 keV beam. The two sets of structure functions are similar, but there are subtle differences in the shape and relative position of the two functions suggesting a possible differences between the structure of bulk and siphon water. In addition, the first structural peak (Q0) for water in a siphon, showed evidence of a step-wise increase in Q0 with increasing temperature rather than a smoothly varying increase. More experiments are required to investigate this apparent difference.
Resumo:
This paper describes the experimental evaluation of a novel Autonomous Surface Vehicle capable of navigating complex inland water reservoirs and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran is capable of collecting water column profiles whilst in motion. It is also directly integrated with a reservoir scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper describes the onboard vehicle navigation and control algorithms as well as obstacle avoidance strategies. Experimental results are shown demonstrating its ability to maintain track and avoid obstacles on a variety of large-scale missions and under differing weather conditions, as well as its ability to continuously collect various water quality parameters complimenting traditional manual monitoring campaigns.
Resumo:
This paper describes a novel Autonomous Surface Vehicle capable of navigating throughout complex inland water storages and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran can collect this information throughout the water column whilst the vehicle is moving. A unique feature of this ASV is its integration into a storage scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper provides an overview of the vehicle design and operation including control, laser-based obstacle avoidance, and vision-based inspection capabilities. Experimental results are shown illustrating its ability to continuously collect key water quality parameters and compliment intensive manual monitoring campaigns.
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp which is suitable for making photocopier paper and tissue products. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 µm c.f. 122 µm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free peroxide bleaching (QPP), although none achieved a satisfactory brightness level and further improvement would be required to produce a bleached pulp.
Resumo:
Cooperation between multiple environmental decision-makers and activities is necessary to address the impacts of diffuse sources of agricultural pollution on the water quality entering Australia’s Great Barrier Reef (GBR). Water planning efforts requires available knowledge to inform this co-operative water program implementation and reform. This paper uses knowledge sharing, translation and feedback features of collaboration as a way to assess knowledge work practices during key phases of the water planning process. This enabled a systematic review of knowledge work practices in partnership with collaborative water planning groups established to inform water quality program investment decisions in the GBR’s Wet Tropics region. This research builds on the growing academic and policy interest in the conditions required to enable different types of knowledge to be successfully used for policy-making by focusing on when, how and why knowledge work to meet these conditions is required.
Resumo:
M. fortuitum is a rapidly growing mycobacterium associated with community-acquired and nosocomial wound, soft tissue, and pulmonary infections. It has been postulated that water has been the source of infection especially in the hospital setting. The aim of this study was to determine if municipal water may be the source of community-acquired or nosocomial infections in the Brisbane area. Between 2007 and 2009, 20 strains of M. fortuitum were recovered from municipal water and 53 patients’ isolates were submitted to the reference laboratory. A wide variation in strain types was identified using repetitive element sequence-based PCR, with 13 clusters of ≥2 indistinguishable isolates, and 28 patterns consisting of individual isolates. The clusters could be grouped into seven similar groups (>95% similarity). Municipal water and clinical isolates collected during the same time period and from the same geographical area consisted of different strain types, making municipal water an unlikely source of sporadic human infection.
Resumo:
Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.
Resumo:
Background How accurately do people perceive extreme water speeds and how does their perception affect perceived risk? Prior research has focused on the characteristics of moving water that can reduce human stability or balance. The current research presents the first experiment on people's perceptions of risk and moving water at different speeds and depths. Methods Using a randomized within-person 2 (water depth: 0.45, 0.90 m) ×3 (water speed: 0.4, 0.8, 1.2 m/s) experiment, we immersed 76 people in moving water and asked them to estimate water speed and the risk they felt. Results Multilevel modeling showed that people increasingly overestimated water speeds as actual water speeds increased or as water depth increased. Water speed perceptions mediated the direct positive relationship between actual water speeds and perceptions of risk; the faster the moving water, the greater the perceived risk. Participants' prior experience with rip currents and tropical cyclones moderated the strength of the actual–perceived water speed relationship; consequently, mediation was stronger for people who had experienced no rip currents or fewer storms. Conclusions These findings provide a clearer understanding of water speed and risk perception, which may help communicate the risks associated with anticipated floods and tropical cyclones.