618 resultados para WLT Estimators
Resumo:
Smoothing splines are a popular approach for non-parametric regression problems. We use periodic smoothing splines to fit a periodic signal plus noise model to data for which we assume there are underlying circadian patterns. In the smoothing spline methodology, choosing an appropriate smoothness parameter is an important step in practice. In this paper, we draw a connection between smoothing splines and REACT estimators that provides motivation for the creation of criteria for choosing the smoothness parameter. The new criteria are compared to three existing methods, namely cross-validation, generalized cross-validation, and generalization of maximum likelihood criteria, by a Monte Carlo simulation and by an application to the study of circadian patterns. For most of the situations presented in the simulations, including the practical example, the new criteria out-perform the three existing criteria.
Resumo:
Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild (1999) under two-phase sampling designs. We show that the maximum likelihood estimators for both the parametric and nonparametric parts of the model are asymptotically normal and efficient. The efficient influence function for the parametric part aggress with the more general information bound calculations of Robins, Hsieh, and Newey (1995). By verifying the conditions of Murphy and Van der Vaart (2000) for a least favorable parametric submodel, we provide asymptotic justification for statistical inference based on profile likelihood.
Resumo:
Marginal generalized linear models can be used for clustered and longitudinal data by fitting a model as if the data were independent and using an empirical estimator of parameter standard errors. We extend this approach to data where the number of observations correlated with a given one grows with sample size and show that parameter estimates are consistent and asymptotically Normal with a slower convergence rate than for independent data, and that an information sandwich variance estimator is consistent. We present two problems that motivated this work, the modelling of patterns of HIV genetic variation and the behavior of clustered data estimators when clusters are large.
Resumo:
In biostatistical applications interest often focuses on the estimation of the distribution of a time-until-event variable T. If one observes whether or not T exceeds an observed monitoring time at a random number of monitoring times, then the data structure is called interval censored data. We extend this data structure by allowing the presence of a possibly time-dependent covariate process that is observed until end of follow up. If one only assumes that the censoring mechanism satisfies coarsening at random, then, by the curve of dimensionality, typically no regular estimators will exist. To fight the curse of dimensionality we follow the approach of Robins and Rotnitzky (1992) by modeling parameters of the censoring mechanism. We model the right-censoring mechanism by modeling the hazard of the follow up time, conditional on T and the covariate process. For the monitoring mechanism we avoid modeling the joint distribution of the monitoring times by only modeling a univariate hazard of the pooled monitoring times, conditional on the follow up time, T, and the covariates process, which can be estimated by treating the pooled sample of monitoring times as i.i.d. In particular, it is assumed that the monitoring times and the right-censoring times only depend on T through the observed covariate process. We introduce inverse probability of censoring weighted (IPCW) estimator of the distribution of T and of smooth functionals thereof which are guaranteed to be consistent and asymptotically normal if we have available correctly specified semiparametric models for the two hazards of the censoring process. Furthermore, given such correctly specified models for these hazards of the censoring process, we propose a one-step estimator which will improve on the IPCW estimator if we correctly specify a lower-dimensional working model for the conditional distribution of T, given the covariate process, that remains consistent and asymptotically normal if this latter working model is misspecified. It is shown that the one-step estimator is efficient if each subject is at most monitored once and the working model contains the truth. In general, it is shown that the one-step estimator optimally uses the surrogate information if the working model contains the truth. It is not optimal in using the interval information provided by the current status indicators at the monitoring times, but simulations in Peterson, van der Laan (1997) show that the efficiency loss is small.
Resumo:
A large number of proposals for estimating the bivariate survival function under random censoring has been made. In this paper we discuss nonparametric maximum likelihood estimation and the bivariate Kaplan-Meier estimator of Dabrowska. We show how these estimators are computed, present their intuitive background and compare their practical performance under different levels of dependence and censoring, based on extensive simulation results, which leads to a practical advise.
Resumo:
In biostatistical applications, interest often focuses on the estimation of the distribution of time T between two consecutive events. If the initial event time is observed and the subsequent event time is only known to be larger or smaller than an observed monitoring time, then the data is described by the well known singly-censored current status model, also known as interval censored data, case I. We extend this current status model by allowing the presence of a time-dependent process, which is partly observed and allowing C to depend on T through the observed part of this time-dependent process. Because of the high dimension of the covariate process, no globally efficient estimators exist with a good practical performance at moderate sample sizes. We follow the approach of Robins and Rotnitzky (1992) by modeling the censoring variable, given the time-variable and the covariate-process, i.e., the missingness process, under the restriction that it satisfied coarsening at random. We propose a generalization of the simple current status estimator of the distribution of T and of smooth functionals of the distribution of T, which is based on an estimate of the missingness. In this estimator the covariates enter only through the estimate of the missingness process. Due to the coarsening at random assumption, the estimator has the interesting property that if we estimate the missingness process more nonparametrically, then we improve its efficiency. We show that by local estimation of an optimal model or optimal function of the covariates for the missingness process, the generalized current status estimator for smooth functionals become locally efficient; meaning it is efficient if the right model or covariate is consistently estimated and it is consistent and asymptotically normal in general. Estimation of the optimal model requires estimation of the conditional distribution of T, given the covariates. Any (prior) knowledge of this conditional distribution can be used at this stage without any risk of losing root-n consistency. We also propose locally efficient one step estimators. Finally, we show some simulation results.
Resumo:
We investigate the interplay of smoothness and monotonicity assumptions when estimating a density from a sample of observations. The nonparametric maximum likelihood estimator of a decreasing density on the positive half line attains a rate of convergence at a fixed point if the density has a negative derivative. The same rate is obtained by a kernel estimator, but the limit distributions are different. If the density is both differentiable and known to be monotone, then a third estimator is obtained by isotonization of a kernel estimator. We show that this again attains the rate of convergence and compare the limit distributors of the three types of estimators. It is shown that both isotonization and smoothing lead to a more concentrated limit distribution and we study the dependence on the proportionality constant in the bandwidth. We also show that isotonization does not change the limit behavior of a kernel estimator with a larger bandwidth, in the case that the density is known to have more than one derivative.
Resumo:
Estimation for bivariate right censored data is a problem that has had much study over the past 15 years. In this paper we propose a new class of estimators for the bivariate survival function based on locally efficient estimation. We introduce the locally efficient estimator for bivariate right censored data, present an asymptotic theorem, present the results of simulation studies and perform a brief data analysis illustrating the use of the locally efficient estimator.
Resumo:
In many applications the observed data can be viewed as a censored high dimensional full data random variable X. By the curve of dimensionality it is typically not possible to construct estimators that are asymptotically efficient at every probability distribution in a semiparametric censored data model of such a high dimensional censored data structure. We provide a general method for construction of one-step estimators that are efficient at a chosen submodel of the full-data model, are still well behaved off this submodel and can be chosen to always improve on a given initial estimator. These one-step estimators rely on good estimators of the censoring mechanism and thus will require a parametric or semiparametric model for the censoring mechanism. We present a general theorem that provides a template for proving the desired asymptotic results. We illustrate the general one-step estimation methods by constructing locally efficient one-step estimators of marginal distributions and regression parameters with right-censored data, current status data and bivariate right-censored data, in all models allowing the presence of time-dependent covariates. The conditions of the asymptotics theorem are rigorously verified in one of the examples and the key condition of the general theorem is verified for all examples.
Resumo:
We consider nonparametric missing data models for which the censoring mechanism satisfies coarsening at random and which allow complete observations on the variable X of interest. W show that beyond some empirical process conditions the only essential condition for efficiency of an NPMLE of the distribution of X is that the regions associated with incomplete observations on X contain enough complete observations. This is heuristically explained by describing the EM-algorithm. We provide identifiably of the self-consistency equation and efficiency of the NPMLE in order to make this statement rigorous. The usual kind of differentiability conditions in the proof are avoided by using an identity which holds for the NPMLE of linear parameters in convex models. We provide a bivariate censoring application in which the condition and hence the NPMLE fails, but where other estimators, not based on the NPMLE principle, are highly inefficient. It is shown how to slightly reduce the data so that the conditions hold for the reduced data. The conditions are verified for the univariate censoring, double censored, and Ibragimov-Has'minski models.
Resumo:
This paper discusses estimation of the tumor incidence rate, the death rate given tumor is present and the death rate given tumor is absent using a discrete multistage model. The model was originally proposed by Dewanji and Kalbfleisch (1986) and the maximum likelihood estimate of the tumor incidence rate was obtained using EM algorithm. In this paper, we use a reparametrization to simplify the estimation procedure. The resulting estimates are not always the same as the maximum likelihood estimates but are asymptotically equivalent. In addition, an explicit expression for asymptotic variance and bias of the proposed estimators is also derived. These results can be used to compare efficiency of different sacrifice schemes in carcinogenicity experiments.
Resumo:
We propose robust and e±cient tests and estimators for gene-environment/gene-drug interactions in family-based association studies. The methodology is designed for studies in which haplotypes, quantitative pheno- types and complex exposure/treatment variables are analyzed. Using causal inference methodology, we derive family-based association tests and estimators for the genetic main effects and the interactions. The tests and estimators are robust against population admixture and strati¯cation without requiring adjustment for confounding variables. We illustrate the practical relevance of our approach by an application to a COPD study. The data analysis suggests a gene-environment interaction between a SNP in the Serpine gene and smok- ing status/pack years of smoking that reduces the FEV1 volume by about 0.02 liter per pack year of smoking. Simulation studies show that the pro- posed methodology is su±ciently powered for realistic sample sizes and that it provides valid tests and effect size estimators in the presence of admixture and stratification.
Resumo:
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Since mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left truncated and right censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. Firstly, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.
Resumo:
Suppose that we are interested in establishing simple, but reliable rules for predicting future t-year survivors via censored regression models. In this article, we present inference procedures for evaluating such binary classification rules based on various prediction precision measures quantified by the overall misclassification rate, sensitivity and specificity, and positive and negative predictive values. Specifically, under various working models we derive consistent estimators for the above measures via substitution and cross validation estimation procedures. Furthermore, we provide large sample approximations to the distributions of these nonsmooth estimators without assuming that the working model is correctly specified. Confidence intervals, for example, for the difference of the precision measures between two competing rules can then be constructed. All the proposals are illustrated with two real examples and their finite sample properties are evaluated via a simulation study.
Resumo:
We propose a new method for fitting proportional hazards models with error-prone covariates. Regression coefficients are estimated by solving an estimating equation that is the average of the partial likelihood scores based on imputed true covariates. For the purpose of imputation, a linear spline model is assumed on the baseline hazard. We discuss consistency and asymptotic normality of the resulting estimators, and propose a stochastic approximation scheme to obtain the estimates. The algorithm is easy to implement, and reduces to the ordinary Cox partial likelihood approach when the measurement error has a degenerative distribution. Simulations indicate high efficiency and robustness. We consider the special case where error-prone replicates are available on the unobserved true covariates. As expected, increasing the number of replicate for the unobserved covariates increases efficiency and reduces bias. We illustrate the practical utility of the proposed method with an Eastern Cooperative Oncology Group clinical trial where a genetic marker, c-myc expression level, is subject to measurement error.