940 resultados para WIND NEBULAE
Resumo:
This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.
Resumo:
In July 2010, the Shanghai Donghai Bridge wind farm, the first commercial offshore wind project was connected to the main grid in China. Three months later, four contracts were handed out to build a total of 1GW wind power capacity in the first round of an offshore concession project by the Chinese central government. At that time, there was a worldwide expectation that Chinese offshore wind power capacity would expand rapidly. However, China only achieved a total offshore wind power installed capacity of 389.2 MW by the end of 2012. This paper studies the recent development of offshore wind power in China by dividing the offshore wind power projects into three categories. This paper presents the difficulties for the Chinese government to achieve its 12th Five Year Plan for offshore wind power. Some policy recommendations to overcome the current difficulties are made in the conclusions.
Resumo:
Over-frequency generator tripping (OFGT) is used to cut off extra generation to balance power and loads in an isolated system. In this paper the impact of OGFT as a consequence of grid-connected wind farms and under-frequency load shedding (UFLS) is analysed. The paper uses a power system model to demonstrate that wind power fluctuations can readily render OFGT and UFLS maloperation. Using combined hydro and wind generation, the paper proposes a coordinated strategy which resolves problems associated with OFGT and UFLS and preserves system stability.
Resumo:
Large scale wind farms are subject to tripping, as a consequence of turbine failure, over-sensitive protection, turbines not equipped with low-voltage ride through (LVRT), and reactive power compensation device defects which can lead to voltage rises. This paper considers pertinent issues which render tripping based on a study of LVRT and wind farm protection, with methods to avoid large scale wind generator tripping proposed. The results of LVRT field tests in Jiuquan, China in December 2012 show that the proposed approaches are effective. The paper also presents work which proposes an early warning system to forecast the risk of wind power tripping.
Resumo:
It is acknowledged that wind power is a stochastic energy source compared to hydroelectric generation which is easily scheduled. In this paper a scheme for coordinating wind power plant and hydroelectric power plant is presented by using PMUs to measure and control the state of wind and hydro power plants. Hydroelectric generation is proposed as a method of energy reserve and compensation in the context of wind power fluctuation in order to avoid full or partial curtailment of wind generation to benefit wind providers. The feasibility of this proposed scheme is investigated by power flow calculation and stability analysis using the IEEE 30-bus power system model.
Resumo:
This paper presents a voltage and power quality enhancement scheme for a doubly-fed induction generator (DFIG) wind farm during variable wind conditions. The wind profiles were derived considering the measured data at a DFIG wind farm located in Northern Ireland (NI). The aggregated DFIG wind farm model was validated using measured data at a wind farm during variable generation. The voltage control strategy was developed considering the X/R ratio of the wind farm feeder which connects the wind farm and the grid. The performance of the proposed strategy was evaluated for different X/R ratios, and wind profiles with different characteristics. The impact of flicker propagation along the wind farm feeder and effectiveness of the proposed strategy is also evaluated with consumer loads connected to the wind farm feeder. It is shown that voltage variability and short-term flicker severity is significantly reduced following implementation of the novel strategy described.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency periodic pulsations contained within the active power flow from different wind farms. A primary concern is excitation of existing low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of the interconnected Northern and Southern power system networks. Recently grid code requirements on the Northern Ireland power system have been updated stipulating that wind farms connected after 2005 must be able to control the magnitude of oscillations in the range of 0.25 - 1.75 Hz to within 1% of the wind farm's registered output. In order to determine whether wind farm low-frequency oscillations have a negative effect (excite other modes) or possibly a positive impact (damping of existing modes) on the power system, the oscillations at the point of connection must be measured and characterised. Using time - frequency methods, research presented in this paper has been conducted to extract signal features from measured low-frequency active power pulsations produced by wind farms to determine the effective composition of possible oscillatory modes which may have a detrimental effect on system dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.
Resumo:
The doubly-fed induction generator (DFIG) now represents the dominant technology in wind turbine design. One consequence of this is limited damping and inertial response during transient grid disturbances. A dasiadecoupledpsila strategy is therefore proposed to operate the DFIG grid-side converter (GSC) as a static synchronous compensator (STATCOM) during a fault, supporting the local voltage, while the DFIG operates as a fixed-speed induction generator (FSIG) providing an inertial response. The modeling aspects of the decoupled control strategy, the selection of protection control settings, the significance of the fault location and operation at sub- and super-synchronous speeds are analyzed in detail. In addition, a case study is developed to validate the proposed strategy under different wind penetrations levels. The simulations show that suitable configuration of the decoupled strategy can be deployed to improve system voltage stability and inertial response for a range of scenarios, especially at high wind penetration. The conclusions are placed in context of the practical limitations of the technology employed and the system conditions.
Resumo:
The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly-fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This paper presents a measurement based method for the early detection of power system oscillations, with attention to mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet transform and support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in different frequency bands, while SVDD is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude or that are resonant can be alarmed to the system operator, to reduce the risk of system instability. Method evaluation is exemplified used real data from a chosen wind farm.
Resumo:
This paper proposes a method for wind turbine mode identification using the multivariable output error statespace (MOESP) identification algorithm. The paper incorporates a fast moving window QR decomposition and propagator method from array signal processing, yielding a moving window subspace identification algorithm. The algorithm assumes that the system order is known as a priori and remains constant during identification. For the purpose of extracting modal information for turbines modelled as a linear parameter varying (LPV) system, the algorithm is applicable since a nonlinear system can be approximated as a piecewise time invariant system in consecutive data windows. The algorithm is exemplified using numerical simulations which show that the moving window algorithm can track the modal information. The paper also demonstrates that the low computational burden of the algorithm, compared to conventional batch subspace identification, has significant implications for online implementation.
Resumo:
The rapid growth of wind generation in many European countries is pushing power systems into
uncharted territory. As additional wind generators are installed, the changing generation mix may
impact on power system stability. This paper adopts the New England 39 bus system as a test
system for transient stability analysis. Thermal generator models are based on a likely future plant
mix for existing systems, while varying capacities of fixed-speed induction generators (FSIG) and
doubly-fed induction generators (DFIG) are considered. The main emphasis here has been placed
on the impact of wind technology mix on inter-area oscillations following transient grid
disturbances. In addition, both rotor angle stability and transient voltage stability are examined, and
results are compared with current grid code requirements and standards. Results have shown that
FSIGs can reduce tie-line oscillations and improve damping following a transient disturbance, but
they also cause voltage stability and rotor angle stability problems at high wind penetrations. In
contrast, DFIGs can improve both voltage and rotor angle stability, but their power output
noticeably oscillates during disturbances.
Resumo:
This paper studies the impact of tower shadow effect on the power output of a fixed-speed wind farm. A data acquisition unit was placed at a wind farm in Northern Ireland which consists of ten fixed-speed wind turbines. The recording equipment logged the wind farmpsilas electrical data, which was time stamped using the global positioning network. Video footage of the wind farm was recorded and from it the blade angle of each turbine was determined with respect to time. Using the blade angle data and the wind farmpsilas power output, studies where performed to ascertain the extent of tower shadow effect on power fluctuation. This paper presents evidence that suggests that tower shadow effect has a significant impact on power fluctuation and that this effect is increased due to the synchronising of turbine blades around the tower region.
Resumo:
This paper presents transient stability analysis for a power system with high wind penetration. The transient stability has been evaluated based on two stability criteria: rotor angle stability and voltage stability. A modified IEEE-14 bus system has been used as the main study network and simulations have been conducted at several wind power penetration levels, defined as a fraction of total system generation. A wide range of scenarios have been presented based on the wind farm voltage at the point of connection, i.e. low voltage (LV) distribution level and high voltage (HV) transmission level, and the type of wind generator technology, i.e. fixed speed induction generator (FSIG) and doubly-fed induction generator (DFIG).
Resumo:
This paper studies the system modelling and control aspects of switched reluctance generator (SRG) based variable speed wind turbines. A control system is implemented to provide proper operation of the SRG as well as power tracking capabilities for varying wind speeds. The control system for the grid side inverter that will allow the SRG to properly generate power to the system is also presented. Studies are presented of both the SRG and inverter control systems capabilities during a balanced three-phase fault. The paper will demonstrate that the SRG based wind turbine presents a feasible variable wind speed solution with good fault response capabilities.
Resumo:
The impact of power fluctuations arising from fixed-speed wind turbines on the magnitude and frequency of inter-area oscillations has been investigated. The authors introduced data acquisition equipment to record the power flow on the interconnector between the Northern Ireland and Republic of Ireland systems. Through monitoring the interconnector oscillation using a fast Fourier transform, it was possible to determine the magnitude and frequency of the inter-area oscillation between the two systems. The impact of tower shadow on the output power from a wind farm was analysed using data recorded on site. A case study investigates the effect on the system of the removal of a large fixed-speed wind farm. Conclusions are drawn on the impact that conventional generation and the output from fixed-speed wind farms have on the stability of the Irish power system.