1000 resultados para Volume Expiratório Forçado
Resumo:
The Multiscale Finite Volume (MsFV) method has been developed to efficiently solve reservoir-scale problems while conserving fine-scale details. The method employs two grid levels: a fine grid and a coarse grid. The latter is used to calculate a coarse solution to the original problem, which is interpolated to the fine mesh. The coarse system is constructed from the fine-scale problem using restriction and prolongation operators that are obtained by introducing appropriate localization assumptions. Through a successive reconstruction step, the MsFV method is able to provide an approximate, but fully conservative fine-scale velocity field. For very large problems (e.g. one billion cell model), a two-level algorithm can remain computational expensive. Depending on the upscaling factor, the computational expense comes either from the costs associated with the solution of the coarse problem or from the construction of the local interpolators (basis functions). To ensure numerical efficiency in the former case, the MsFV concept can be reapplied to the coarse problem, leading to a new, coarser level of discretization. One challenge in the use of a multilevel MsFV technique is to find an efficient reconstruction step to obtain a conservative fine-scale velocity field. In this work, we introduce a three-level Multiscale Finite Volume method (MlMsFV) and give a detailed description of the reconstruction step. Complexity analyses of the original MsFV method and the new MlMsFV method are discussed, and their performances in terms of accuracy and efficiency are compared.
Resumo:
To date there have been few investigations of the substructures in low-volume road (LVR) bridges. Steel sheet piling has the potential to provide an economical alternative to concrete bridge abutments, but it needs investigation with regard to vertical and lateral load resistance, construction methods, and performance monitoring. The objectives of this project were to develop a design approach for sheet pile bridge abutments for short-span low-volume bridges, formulate an instrumentation and monitoring plan to evaluate performance of sheet pile abutment systems, and understand the cost and construction effort associated with building the sheet pile bridge abutment demonstration project. Three demonstration projects (Boone, Blackhawk, and Tama Counties) were selected for the design, construction, and monitoring of sheet pile abutments bridges. Each site was unique and required site-specific design and instrumentation monitoring. The key findings from this study include the following: (1) sheet pile abutment bridges provide an effective solution for LVR bridges, (2) the measured stresses and deflection were different from the assumed where the differences reflect conservatism in the design and the complex field conditions, and (3) additional research is needed to optimize the design.
Resumo:
Iowa has about 22,936 bridges on low-volume roads (LVRs). Based on the National Bridge Inventory data, 22 percent of the LVR bridges in Iowa are structurally deficient, while 5 percent of them are functionally obsolete. The substructure components (abutment and foundation elements) are known to be contributing factors for some of these poor ratings. Steel sheet piling was identified as a possible long-term option for LVR bridge substructures; but, due to lack of experience, Iowa needed investigation with regard to vertical and lateral load resistance, construction methods, design methodology, and load test performance. This project was initiated in January 2007 to investigate use of sheet pile abutments. *************Tech Transfer Summary. For full report see: http://publications.iowa.gov/id/eprint/14832*************
Resumo:
The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.
Resumo:
The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.
Resumo:
Macroscopic features such as volume, surface estimate, thickness and caudorostral length of the human primary visual cortex (Brodman's area 17) of 46 human brains between midgestation and 93 years were studied by means of camera lucida drawings from serial frontal sections. Individual values were best fitted by a logistic function from midgestation to adulthood and by a regression line between adulthood and old age. Allometric functions were calculated to study developmental relationships between all the features. The three-dimensional shape of area 17 was also reconstructed from the serial sections in 15 cases and correlated with the sequence of morphological events. The sulcal pattern of area 17 begins to develop around 21 weeks of gestation but remains rather simple until birth, while it becomes more convoluted, particularly in the caudal part, during the postnatal period. Until birth, a large increase in cortical thickness (about 83% of its mean adult value) and caudorostral length (69%) produces a moderate increase in cortical volume (31%) and surface estimate (40%) of area 17. After birth, the cortical volume and surface undergo their maximum growth rate, in spite of a rather small increase in cortical thickness and caudorostral length. This is due to the development of the pattern of gyrification within and around the calcarine fissure. All macroscopic features have reached the mean adult value by the end of the first postnatal year. With aging, the only features to undergo significant regression are the cortical surface estimate and the caudorostral length. The total number of neurons in area 17 shows great interindividual variability at all ages. No decrease in the postnatal period or in aging could be demonstrated.
Resumo:
IRENE’s mission is to improve the health and well-being of Iowans through collaboration in practice-based research on questions important to primary care physicians and their patients. IRENE’s purpose is to create and foster a network of research collaboration between the academic medical center and primary care physicians through out the state of Iowa with a particular focus on improving rural health.
Resumo:
IRENE’s mission is to improve the health and well-being of Iowans through collaboration in practice-based research on questions important to primary care physicians and their patients. IRENE’s purpose is to create and foster a network of research collaboration between the academic medical center and primary care physicians through out the state of Iowa with a particular focus on improving rural health.
Resumo:
IRENE’s mission is to improve the health and well-being of Iowans through collaboration in practice-based research on questions important to primary care physicians and their patients. IRENE’s purpose is to create and foster a network of research collaboration between the academic medical center and primary care physicians through out the state of Iowa with a particular focus on improving rural health.
Resumo:
IRENE’s mission is to improve the health and well-being of Iowans through collaboration in practice-based research on questions important to primary care physicians and their patients. IRENE’s purpose is to create and foster a network of research collaboration between the academic medical center and primary care physicians through out the state of Iowa with a particular focus on improving rural health.
Resumo:
IRENE’s mission is to improve the health and well-being of Iowans through collaboration in practice-based research on questions important to primary care physicians and their patients. IRENE’s purpose is to create and foster a network of research collaboration between the academic medical center and primary care physicians through out the state of Iowa with a particular focus on improving rural health.
Resumo:
IRENE’s mission is to improve the health and well-being of Iowans through collaboration in practice-based research on questions important to primary care physicians and their patients. IRENE’s purpose is to create and foster a network of research collaboration between the academic medical center and primary care physicians through out the state of Iowa with a particular focus on improving rural health.