986 resultados para Ventricular Myocytes
Resumo:
Les systèmes d'assistance ventriculaire sont apparus durant la dernière décade comme une approche thérapeutique efficace du traitement de l'insuffisance cardiaque terminale, en particulier dans le contexte de manque de donneurs d'organes. Néanmoins, et ceci malgré les progrès techniques majeurs, les taux de complications restent élevés et sont en partie liés à la configuration géométrique, en particulier le site d'implantation de la cannule de sortie à l'aorte thoracique. Bien que l'anastomose à l'aorte descendante permette une chirurgie moins invasive, les bénéfices de cette technique sont toujours controversés, comparée à la méthode standard de l'aorte ascendante, en raison du risque thrombo-embolique possiblement augmenté et des modifications hémodynamiques induites au niveau de l'arc aortique. Dans ce travail, nous comparons in silico en terme de débit et pression les deux possibilités anastomotiques. Nous développons un réseau de modèles mathématiques unidimensionnels, et l'appliquons à diverses situations cliniques, pour différents stades d'insuffisance cardiaque et de vitesses de rotation de la machine. Les données initiales sont obtenues grâce à un modèle OD (c'est-à-dire qui dépend uniquement du temps mais pas de l'espace) du système cardiovasculaire comprenant une assistance circulatoire, validé avec des données cliniques. Les simulations réalisées montrent que les deux méthodes sont similaires, en terme de débit et courbes de pression, ceci pour tous les cas cliniques étudiés. Ces résultats numériques soutiennent la possibilité d'utiliser la technique d'anastomose à l'aorte thoracique descendante, permettant une chirurgie moins invasive. Sur un plan plus fondamental, le système cardiovasculaire peut être simulé par le biais de multiples modèles de niveau de complexité différents, au prix d'un coût computationnel toujours plus élevé. Nous évaluons les avantages de modèles géométriques à plusieurs échelles (uni- et tridimensionnelle) avec données provenant de patients, comparés à des modèles simplifiés. Les résultats montrent que ces modèles de dimensions hétérogènes apportent un bénéfice important en terme de ressources de calcul, tout en conservant une précision acceptable. En conclusion, ces résultats encourageant montrent la relevance des études numériques dans le domaine médical, tant sur le plan fondamental et la compréhension des mécanismes physiopathologiques, que sur le plan applicatif et le développement de nouvelles thérapeutiques.
Resumo:
Background: Graft right ventricular (RV) function is compromised directly posttransplant, especially in heart transplantation (HTx) recipients with pretransplant pulmonary hypertension (PH). Graft RV size and systolic function, and the effect of the recipient's pulmonary haemodynamics on the graft extracellular matrix are not well characterised in the patients long-term after HTx. Aim: Comparison of RV size and systolic function in HTx recipients' long-term posttransplant stratified by the presence of pretransplant PH. Methods: HTx survivors >/=2 years posttransplant were divided into group I without pretransplant PH (pulmonary vascular resistance, PVR <2.5Wood units, n=37) and group II with PH (PVR >/=2.5Wood units, n=16). RV size and systolic function were measured using cardiac magnetic resonance imaging (CMR). The collagen content was assessed in septal endomyocardial biopsies obtained at HTx and at study inclusion. Results: Mean posttransplant follow-up was 5.2+/-2.9 years (group I) and 4.9+/-2.2 years (group II) (p=0.70). PVR was 1.5+/-0.6 vs 4.1+/-1.7Wood units pretransplant (p<0.001), and 1.2+/-0.5 vs 1.3+/-0.5Wood units at study inclusion (p=0.43). Allograft RV size and systolic function were similar in both groups (p always >/=0.07). Collagen content at transplantation and at follow-up were not different (p always >/=0.60). Conclusion: Posttransplant normalisation of pretransplant PH is associated with normal graft RV function long-term after HTx.
Resumo:
Objective: Previous studies reported on the association of left ventricular mass index (LVMI) with urinary sodium or with circulating or urinary aldosterone.We investigated the independent associations of LVMI with the urinary excretion of both sodium and aldosterone. Design and method: We randomly recruited 317 untreated subjects from a White population (45.1%women; mean age 48.2 years).Measurements included echocardiographic left ventricular (LV) properties, the 24 h urinary excretion of sodium and aldosterone, plasma renin activity (PRA), and proximal (RNaprox) and distal (RNadist) renal sodium reabsorption, assessed fromthe endogenous lithium clearance. Inmultivariable-adjusted models,we expressed changes in LVMI per 1 SD increase in the explanatory variables, while accounting for sex, age, systolic blood pressure and the waist-to-hip ratio. Results: LVMI increased independentlywith the urinary excretion of both sodium (+2.48 g/m2; P=0.005) and aldosterone (+2.63 g/m2; P=0.004). Higher sodium excretion was associated with increased mean wall thickness (MWT: +0.126 mm, P=0.054), but with no change in LV end-diastolic diameter (LVID: +0.12mm, P=0.64). In contrast, higher aldosterone excretion was associated with higher LVID (+0.54 mm; P=0.017), but with no change in MWT (+0.070mm; P=0.28).Higher RNadistwas associatedwith lower relativewall thickness (−0.81×10−2, P=0.017), because of opposite trends in LVID(+0.33 mm; P=0.13) and MWT (−0.130mm; P=0.040). LVMI was not associated with PRA or RNaprox. Conclusions: LVMI independently increased with both urinary sodium and aldosterone excretion. IncreasedMWT explained the association of LVMI with urinary sodium and increased LVID the association of LVMI with urinary aldosterone.
Resumo:
AIMS: Diabetes in pregnant women is increasing and with that the complications in their offspring. We studied our population of diabetic mothers (2003-2005) for pathologic ventricular hypertrophy (PVH). METHODS AND RESULTS: In our retrospective study of all 87 diabetic pregnancies (92 neonates), 16 were type 1, 17 were type 2, and 54 were gestational diabetes (GD). Haemoglobin glycated (HbA1c) median was 5.8% (5.3-6.5): 17 with HbA1c above normal 2 with congenital heart disease (CHD) and six with PVH. A total of 75 neonates were normal, five had CHD, and 12 had PVH (1/12 died post-natally, 1/12 stillborn, 2/12 required premature delivery, 8/12 normal). The 16 type 1 pregnancies resulted in three neonates with CHD and in 50% PVH, including one death, one premature Cesarean section because of PVH. The 17 neonates of type 2 pregnancies showed in one CHD and in 25% PVH. Of the 54 GD pregnancies, one had CHD and one had PVH. CONCLUSION: Pregnancies of both type 1 and 2 diabetes carry an increased risk for foetal development of PVH compared with those with GD. The insufficient effect of preventive glycaemia controls leads to conclude that although no definite predictive parameters for malignant outcome can be presented, close monitoring of these pregnancies may prevent perinatal catastrophes.
Resumo:
BACKGROUND: Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS: To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS: Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.
Resumo:
OBJECTIVE: The objective of this study was to investigate the effects of chronic and intermittent hypoxia on myocardial morphology. METHODS: Rats randomly divided into 3 groups (n = 14 per group) were exposed to room air (Fio(2) = 0.21), chronic hypoxia (Fio(2) = 0.10), and intermittent hypoxia (chronic hypoxia with 1 hour per day of room air) for 2 weeks. Weight, blood gas analysis, hematocrit, hemoglobin, red cells, and right and left ventricular pressures were measured. Hearts excised for morphologic examination were randomly divided into 2 groups (9 per group for gross morphologic measurements and 5 per group for histologic and morphometric analysis). The weight ratio of right to left ventricles plus interventricular septum, myocyte diameter, cross-sectional area, and free wall thickness in right and left ventricles were measured. RESULTS: Despite the same polycythemia, the right ventricle pressure (P <.05) and ratio of right to left ventricle pressures (P <.02) were higher after chronic hypoxia than intermittent hypoxia. The ratio of heart weight to total body weight and the ratio of right to left ventricles plus interventricular septum was higher (P <.01) in chronic and intermittent hypoxia than in normoxia. Myocyte diameter was not different between the right and left ventricles in normoxia, whereas right ventricle myocytes were larger than left ventricle myocytes in chronic hypoxia (P <.05) and intermittent hypoxia (P <.0005). There was marked dilatation of right ventricle size (P <.001) and marked reduction of left ventricle (P <.001) size in chronic and intermittent hypoxia compared with normoxia. The total ventricular area (right ventricle plus left ventricle area) remained the same in all groups. The wall thickness ratio in chronic hypoxia and intermittent hypoxia was increased (P <.001) compared with normoxia in the right ventricle but not in the left ventricle. CONCLUSIONS: Intermittent reoxygenation episodes do not induce a lesser ventricular hypertrophic response than observed with chronic hypoxia. The functional myocardial preconditioning consequence of intermittent reoxygenation is not supported by structural differences evident with the available techniques.
Resumo:
BACKGROUND: Recent data suggest that beta-blockers can be beneficial in subgroups of patients with chronic heart failure (CHF). For metoprolol and carvedilol, an increase in ejection fraction has been shown and favorable effects on the myocardial remodeling process have been reported in some studies. We examined the effects of bisoprolol fumarate on exercise capacity and left ventricular volume with magnetic resonance imaging (MRI) and applied a novel high-resolution MRI tagging technique to determine myocardial rotation and relaxation velocity. METHODS: Twenty-eight patients (mean age, 57 +/- 11 years; mean ejection fraction, 26 +/- 6%) were randomized to bisoprolol fumarate (n = 13) or to placebo therapy (n = 15). The dosage of the drugs was titrated to match that of the the Cardiac Insufficiency Bisoprolol Study protocol. Hemodynamic and gas exchange responses to exercise, MRI measurements of left ventricular end-systolic and end-diastolic volumes and ejection fraction, and left ventricular rotation and relaxation velocities were measured before the administration of the drug and 6 and 12 months later. RESULTS: After 1 year, heart rate was reduced in the bisoprolol fumarate group both at rest (81 +/- 12 before therapy versus 61 +/- 11 after therapy; P <.01) and peak exercise (144 +/- 20 before therapy versus 127 +/- 17 after therapy; P <.01), which indicated a reduction in sympathetic drive. No differences were observed in heart rate responses in the placebo group. No differences were observed within or between groups in peak oxygen uptake, although work rate achieved was higher (117.9 +/- 36 watts versus 146.1 +/- 33 watts; P <.05) and exercise time tended to be higher (9.1 +/- 1.7 minutes versus 11.4 +/- 2.8 minutes; P =.06) in the bisoprolol fumarate group. A trend for a reduction in left ventricular end-diastolic volume (-54 mL) and left ventricular end-systolic volume (-62 mL) in the bisoprolol fumarate group occurred after 1 year. Ejection fraction was higher in the bisoprolol fumarate group (25.0 +/- 7 versus 36.2 +/- 9%; P <.05), and the placebo group remained unchanged. Most changes in volume and ejection fraction occurred during the latter 6 months of treatment. With myocardial tagging, insignificant reductions in left ventricular rotation velocity were observed in both groups, whereas relaxation velocity was reduced only after bisoprolol fumarate therapy (by 39%; P <.05). CONCLUSION: One year of bisoprolol fumarate therapy resulted in an improvement in exercise capacity, showed trends for reductions in end-diastolic and end-systolic volumes, increased ejection fraction, and significantly reduced relaxation velocity. Although these results generally confirm the beneficial effects of beta-blockade in patients with chronic heart failure, they show differential effects on systolic and diastolic function.
Resumo:
BACKGROUND: Determining a specific death cause may facilitate individualized therapy in patients with heart failure (HF). Cardiac resynchronization therapy (CRT) decreased mortality in the Cardiac Resynchronization in Heart Failure trial by reducing pump failure and sudden cardiac death (SCD). This study analyzes predictors of specific causes of death. METHODS AND RESULTS: Univariate and multivariate analyses used 8 baseline and 3-month post-randomization variables to predict pump failure and SCD (categorized as "definite," "probable," and "possible"). Of 255 deaths, 197 were cardiovascular. There were 71 SCDs with a risk reduction by CRT of 0.47 (95% confidence interval 0.29-0.76; P = .002) with similar reductions in SCD classified as definite, probable, and possible. Univariate SCD predictors were 3-month HF status (mitral regurgitation [MR] severity, plasma brain natriuretic peptide [BNP], end-diastolic volume, and systolic blood pressure), whereas randomization to CRT decreased risk. Multivariate SCD predictors were randomization to CRT 0.56 (0.53-0.96, P = .035) and 3-month MR severity 1.82 (1.77-2.60, P = .0012). Univariate pump failure death predictors related to baseline HF state (quality of life score, interventricular mechanical delay, end-diastolic volume, plasma BNP, MR severity, and systolic pressure), whereas randomization to CRT and nonischemic cardiomyopathy decreased risk; multivariate predictors of pump failure death were baseline plasma BNP and systolic pressure and randomization to CRT. CONCLUSION: CRT decreased SCD in patients with systolic HF and ventricular dyssynchrony. SCD risk was increased with increased severity of MR (including the 3-month value for MR as a time-dependent covariate) and reduced by randomization to CRT. HF death was increased related to the level of systolic blood pressure, log BNP, and randomization to CRT. These results emphasize the importance and interdependence of HF severity to mortality from pump failure and SCD.
Resumo:
The M-band is the prominent cytoskeletal structure that cross-links the myosin and titin filaments in the middle of the sarcomere. To investigate M-band alterations in heart disease, we analyzed the expression of its main components, proteins of the myomesin family, in mouse and human cardiomyopathy. Cardiac function was assessed by echocardiography and compared to the expression pattern of myomesins evaluated with RT-PCR, Western blot, and immunofluorescent analysis. Disease progression in transgenic mouse models for dilated cardiomyopathy (DCM) was accompanied by specific M-band alterations. The dominant splice isoform in the embryonic heart, EH-myomesin, was strongly up-regulated in the failing heart and correlated with a decrease in cardiac function (R = -0.86). In addition, we have analyzed the expressions of myomesins in human myocardial biopsies (N = 40) obtained from DCM patients, DCM patients supported by a left ventricular assist device (LVAD), hypertrophic cardiomyopathy (HCM) patients and controls. Quantitative RT-PCR revealed that the EH-myomesin isoform was up-regulated 41-fold (P < 0.001) in the DCM patients compared to control patients. In DCM hearts supported by a LVAD and HCM hearts, the EH-myomesin expression was comparable to controls. Immunofluorescent analyses indicate that EH-myomesin was enhanced in a cell-specific manner, leading to a higher heterogeneity of the myocytes' cytoskeleton through the myocardial wall. We suggest that the up-regulation of EH-myomesin denotes an adaptive remodeling of the sarcomere cytoskeleton in the dilated heart and might serve as a marker for DCM in mouse and human myocardium.
Resumo:
Zebrafish and Xenopus have become popular model organisms for studying vertebrate development of many organ systems, including the heart. However, it is not clear whether the single ventricular hearts of these species possess any equivalent of the specialized ventricular conduction system found in higher vertebrates. Isolated hearts of adult zebrafish (Danio rerio) and African toads (Xenopus laevis) were stained with voltage-sensitive dye and optically mapped in spontaneous and paced rhythms followed by histological examination focusing on myocardial continuity between the atrium and the ventricle. Spread of the excitation wave through the atria was uniform with average activation times of 20 +/- 2 and 50 +/- 2 ms for zebrafish and Xenopus toads, respectively. After a delay of 47 +/- 8 and 414 +/- 16 ms, the ventricle became activated first in the apical region. Ectopic ventricular activation was propagated significantly more slowly (total ventricular activation times: 24 +/- 3 vs. 14 +/- 2 ms in zebrafish and 74 +/- 14 vs. 35 +/- 9 ms in Xenopus). Although we did not observe any histologically defined tracts of specialized conduction cells within the ventricle, there were trabecular bands with prominent polysialic acid-neural cell adhesion molecule staining forming direct myocardial continuity between the atrioventricular canal and the apex of the ventricle; i.e., the site of the epicardial breakthrough. We thus conclude that these hearts are able to achieve the apex-to-base ventricular activation pattern observed in higher vertebrates in the apparent absence of differentiated conduction fascicles, suggesting that the ventricular trabeculae serve as a functional equivalent of the His-Purkinje system.
Resumo:
OBJECTIVES: Current indications for therapeutic hypothermia (TH) are restricted to comatose patients with cardiac arrest (CA) due to ventricular fibrillation (VF) and without circulatory shock. Additional studies are needed to evaluate the benefit of this treatment in more heterogeneous groups of patients, including those with non-VF rhythms and/or shock and to identify early predictors of outcome in this setting. DESIGN: Prospective study, from December 2004 to October 2006. SETTING: 32-bed medico-surgical intensive care unit, university hospital. PATIENTS: Comatose patients with out-of-hospital CA. INTERVENTIONS: TH to 33 +/- 1 degrees C (external cooling, 24 hrs) was administered to patients resuscitated from CA due to VF and non-VF (including asystole or pulseless electrical activity), independently from the presence of shock. MEASUREMENTS AND MAIN RESULTS: We hypothesized that simple clinical criteria available on hospital admission (initial arrest rhythm, duration of CA, and presence of shock) might help to identify patients who eventually survive and might most benefit from TH. For this purpose, outcome was related to these predefined variables. Seventy-four patients (VF 38, non-VF 36) were included; 46% had circulatory shock. Median duration of CA (time from collapse to return of spontaneous circulation [ROSC]) was 25 mins. Overall survival was 39.2%. However, only 3.1% of patients with time to ROSC > 25 mins survived, as compared to 65.7% with time to ROSC < or = 25 mins. Using a logistic regression analysis, time from collapse to ROSC, but not initial arrest rhythm or presence of shock, independently predicted survival at hospital discharge. CONCLUSIONS: Time from collapse to ROSC is strongly associated with outcome following VF and non-VF cardiac arrest treated with therapeutic hypothermia and could therefore be helpful to identify patients who benefit most from active induced cooling.
Resumo:
Objective: Existing VADs are single-ventricle pumps needing anticoagulation. We developed a bi ventricular external assist device that reproduces the physiological heart muscle movement completely avoiding anticoagulants. Methods: The device has a carbon fibre skeleton fitting a 30-40 kg patient's heart, to which a Nitinol based artificial muscle is connected. The artificial muscle wraps both ventricles. The strength of the Nitinol fibres is amplified by a pivot articulation in contact with the ventricle wall. The fibres are electrically driven and a dedicated control unit has been developed. We assessed hemodynamic performances of this device using a previously described dedicated bench test. Volume ejected and pressure gradient has been measured with afterload ranging from 25 to 50mmHg. Results: With anafterload of 50mmHg the system has an ejection fraction (EF) of 10% on the right side and 8% on the left side. The system is able to generate a systolic ejection of 5,5 ml on the right side and 4,4 ml on the left side. With anafterload of 25mmHg the results are reduced of about 20%. The activation frequency is 80/minute resulting in a total volume displacement of 440 ml/minute on the right side and 352 ml/minute on the left side. Conclusions: The artificial muscle follows Starling's law as the ejected volume increases when afterload increases. These preliminary studies confirmed the possibility of improving the EF of a failing heart using artificial muscle for external cardiac compression. This device could be helpful in weaning CPB and/or for short-term cardio-circulatory support in paediatric population with cardiac failure.
Resumo:
Forty-six consecutive patients with pulmonary embolism (PE) who underwent pulmonary angiography, helical computed tomography (CT), and echocardiography in the investigators' emergency department were studied. It was determined that the CT right ventricular (RV)/left ventricular (LV) end-diastolic area ratio was correlated with PE obstruction and echocardiography. A CT RV/LV area ratio >1 had a sensitivity of 88% and a specificity of 88% in diagnosing significant PE. The present study suggests that helical CT may be used as a triage tool in acute PE for selecting high-risk patients, using calculation of the RV/LV area ratio to detect RV dysfunction.
Resumo:
To study the role of early energetic abnormalities in the subsequent development of heart failure, we performed serial in vivo combined magnetic resonance imaging (MRI) and (31)P magnetic resonance spectroscopy (MRS) studies in mice that underwent pressure-overload following transverse aorta constriction (TAC). After 3 wk of TAC, a significant increase in left ventricular (LV) mass (74 +/- 4 vs. 140 +/- 26 mg, control vs. TAC, respectively; P < 0.000005), size [end-diastolic volume (EDV): 48 +/- 3 vs. 61 +/- 8 microl; P < 0.005], and contractile dysfunction [ejection fraction (EF): 62 +/- 4 vs. 38 +/- 10%; P < 0.000005] was observed, as well as depressed cardiac energetics (PCr/ATP: 2.0 +/- 0.1 vs. 1.3 +/- 0.4, P < 0.0005) measured by combined MRI/MRS. After an additional 3 wk, LV mass (140 +/- 26 vs. 167 +/- 36 mg; P < 0.01) and cavity size (EDV: 61 +/- 8 vs. 76 +/- 8 microl; P < 0.001) increased further, but there was no additional decline in PCr/ATP or EF. Cardiac PCr/ATP correlated inversely with end-systolic volume and directly with EF at 6 wk but not at 3 wk, suggesting a role of sustained energetic abnormalities in evolving chamber dysfunction and remodeling. Indeed, reduced cardiac PCr/ATP observed at 3 wk strongly correlated with changes in EDV that developed over the ensuing 3 wk. These data suggest that abnormal energetics due to pressure overload predict subsequent LV remodeling and dysfunction.