996 resultados para Vascugraft(r) Arterial Prosthesis
Resumo:
Aims Compared with other non-steroid anti-inflammatory drugs (NSAIDs), aspirin is not correlated to hypertension. It has been shown that aspirin has unique vasodilator action in vivo, offering an explanation for the unique blood pressure effect of aspirin. In the present study, we investigate the mechanism whereby salicylates (aspirin and sodium salicylate) dilate blood vessels. Methods and results Rat aortic or mesenteric arterial rings were used to test the vascular effect of salicylates and other NSAIDs. RhoA translocation and the phosphorylation of MYPT1, the regulatory subunit of myosin light chain phosphatase, were measured by western blot, as evidenced for RhoA/Rho-kinase activation. Salicylates, but not other NSAIDs, relaxed contraction induced by most tested constrictors except for calyculin A, indicating that RhoA/Rho-kinase-mediated calcium sensitization is involved. The involvement of RhoA/Rho kinase in vasodilation by salicylates was confirmed by measurements of RhoA translocation and MYPT1 phosphorylation. The calculated half maximal inhibitory concentration (IC(50)) of vasodilation was apparently higher than that of cyclooxygenase inhibition, but comparable to that of proline-rich tyrosine kinase 2 (PYK2) inhibition. Over-expression of PYK2 induced RhoA translocation and MYPT1 phosphorylation, and these effects were markedly inhibited by sodium salicylate treatment. Consistent with the ex vitro vascular effects, sodium salicylate acutely decreased blood pressure in spontaneous hypertensive rats but not in Wistar Kyoto rats. Conclusion Salicylates dilate blood vessels through inhibiting PYK2-mediated RhoA/Rho-kinase activation and thus lower blood pressure.
Resumo:
There are interactions between endothelin-1 (ET-1) and endothelial vascular injury in hyperhomocysteinemia (HHcy), but the underlying mechanisms are poorly understood. Here we evaluated the effects of HHcy on the endothelin system in rat carotid arteries. Vascular reactivity to ET-1 and ET(A) and ET(B) receptor antagonists was assessed in rings of carotid arteries from normal rats and those with HHcy. ET(A) and ET(B) receptor expression was assessed by mRNA (RT-PCR), immunohistochemistry and binding of [(125)I]-ET-1. HHcy enhanced ET-1-induced contractions of carotid rings with intact endothelium. Selective antagonism of ET(A) or ET(B) receptors produced concentration-dependent rightward displacements of ET-1 concentration response curves. Antagonism of ET(A) but not of ET(B) receptors abolished enhancement in HHcy tissues. ET(A) and ET(B) receptor gene expressions were not up-regulated. ET(A) receptor expression in the arterial media was higher in HHcy arteries. Contractions to big ET-1 served as indicators of endothelin-converting enzyme activity, which was decreased by HHcy, without reduction of ET-1 levels. ET-1-induced Rho-kinase activity, calcium release and influx were increased by HHcy. Pre-treatment with indomethacin reversed enhanced responses to ET-1 in HHcy tissues, which were reduced also by a thromboxane A(2) receptor antagonist. Induced relaxation was reduced by BQ788, absent in endothelium-denuded arteries and was decreased in HHcy due to reduced bioavailability of NO. Increased ET(A) receptor density plays a fundamental role in endothelial injury induced by HHcy. ET-1 activation of ET(A) receptors in HHcy changed the balance between endothelium-derived relaxing and contracting factors, favouring enhanced contractility. British Journal of Pharmacology (2009) 157, 568-580; doi:10.1111/j.1476-5381.2009.00165.x; published online 9 April 2009 This article is part of a themed section on Endothelium in Pharmacology. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009.
Resumo:
Genistein produces antihypertensive and beneficial cardiovascular effects, although the mechanisms for these effects are not known. We examined whether genistein inhibits the in vivo responses to angiotensin I or enhances the responses to bradykinin in anaesthetized rats as a result of angiotensin-converting enzyme inhibition. We have also studied the in vitro effects produced by genistein on the angiotensin-converting enzyme activity. We measured the changes in systemic arterial pressure induced by angiotensin I in doses of 0.03 to 10 mu g/kg, by angiotensin II in doses of 0.01 to 3 mu g/kg, and to bradykinin in doses of 0.03 to 10 mu g/kg in anaesthetized rats pretreated with vehicle (controls), or a single i.v. dose of genistein 25 mg/kg, or daily genistein 25 mg/kg i.v for two days, or a single i.v. dose of captopril 2 mg/kg. Plasma angiotensin-converting enzyme activity was determined in controls and genistein-treated rats using a fluorometric method. The effects of genistein (3-300 mu mol/1) on in vitro angiotensin-converting enzyme activity were assessed by adding genistein to plasma samples and measuring angiotensin-converting enzyme activity. We found significant lower angiotensin-converting enzyme activity in plasma samples from rats pretreated with genistein compared with those found in the Control group (77.7 +/- 8.1 his-leu nmol/min/ml and 108.7 +/- 8.4 his-leu nmol/min/ml, respectively; P=0.01). The incubation of genistein with plasma samples showed that genistein decreased the angiotensin-converting enzyme activity in plasma in a concentration-dependent manner (P<0.01). These findings indicate that genistein inhibits the angiotensin-converting enzyme in vivo and in vitro and may explain, at least in part, the antihypertensive and beneficial vascular effects produced by genistein. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The cavernosal tissue is highly responsive to endothelin-1 (ET-1), and penile smooth muscle cells not only respond to but also synthesize ET-1. Considering that ET-1 is directly involved in end-organ damage in salt-sensitive forms of hypertension, we hypothesized that activation of the ET-1/ET(A) receptor pathway contributes to erectile dysfunction (ED) associated with mineralocorticoid hypertension. Wistar rats were uninephrectomized and submitted to deoxycorticosterone acetate (DOCA)-salt treatment for 5 weeks. Control (Uni [uninephrectomized control]) animals were uninephrectomized and given tap water. Uni and DOCA-salt rats were simultaneously treated with vehicle or atrasentan (ET(A) receptor antagonist, 5 mg/Kg/day). Cavernosal reactivity to ET-1, phenylephrine (PE), ET(B) receptor agonist (IRL-1620) and electric field stimulation (EFS) were evaluated in vitro. Expression of ROCK alpha, ROCK beta, myosin phosphatase target subunit 1 (MYPT-1), and extracellular signal-regulated kinase 1/2 (ERK 1/2) were evaluated by western blot analysis. ET-1 and ET(A) receptor mRNA expression was evaluated by real-time reverse-transcriptase polymerase chain reaction. Voltage-dependent increase in intracavernosal pressure/mean arterial pressure (ICP/MAP) was used to evaluate erectile function in vivo. ET(A) receptor blockade prevents DOCA-salt-associated ED. Cavernosal strips from DOCA-salt rats displayed augmented preproET-1 expression, increased contractile responses to ET-1 and decreased relaxation to IRL-1620. Contractile responses induced by EFS and PE were enhanced in cavernosal tissues from DOCA-salt hypertensive rats. These functional changes were associated with increased activation of the RhoA/Rho-kinase and ERK 1/2 pathways. Treatment of rats with atrasentan completely prevented changes in cavernosal reactivity in DOCA-salt rats and restored the decreased ICP/MAP, completely preventing ED in DOCA-salt rats. Activation of the ET-1/ET(A) pathway contributes to mineralocorticoid hypertension-associated ED. ET(A) receptor blockade may represent an alternative therapeutic approach for ED associated with salt-sensitive hypertension and in pathological conditions where increased levels of ET-1 are present. Carneiro FS, Nunes KP, Giachini FRC, Lima VV, Carneiro ZN, Nogueira EF, Leite R, Ergul A, Rainey WE, Webb RC, and Tostes RC. Activation of the ET-1/ETA pathway contributes to erectile dysfunction associated with mineralocorticoid hypertension. J Sex Med **;**:**-**.
Resumo:
In rats, conditioned fear to context causes freezing immobility and cardiovascular changes. The dorsal hippocampus (DH) has a critical role in several memory processes, including conditioning fear to contextual information. To explore a possible involvement of the DH in contextual fear conditioning-evoked cardiovascular (mean arterial pressure and heart rate increases) and behavioral (freezing) responses, DH synaptic transmission was temporarily inhibited by bilateral microinjections of 500 nl of the nonselective synapse blocker, cobalt chloride (COCl2, 1 mmol/l), at different periods of the experimental procedure. During re-exposure to the foot shock chamber in which conditioning had taken place, bilateral DH inhibition 10 min before the conditioning session had no effect on either behavioral or cardiovascular responses. Bilateral DH inhibition immediately after the conditioning session (110 min) decreased both behavioral and cardiovascular responses during the context test. Finally, 48 h after the conditioning session, bilateral DH inhibition 10 min before re-exposure to the foot shock chamber significantly reduced cardiovascular responses but not freezing responses. These results suggest that contextual fear conditioning acquisition does not depend on the DH. This structure, however, is crucial for the consolidation of contextual fear. Moreover, although the DH appears to be less important for the behavioral (freezing) changes induced by re-exposure to the aversive conditioned context, it may play an important role on the cardiovascular responses generated by this model.
Resumo:
Introduction. Diabetes mellitus (DM) is a risk factor for erectile dysfunction (ED). Although type 2 DM is responsible for 90-95% diabetes cases, type 1 DM experimental models are commonly used to study diabetes-associated ED. Aim. Goto-Kakizaki (GK) rat model is relevant to ED studies since the great majority of patients with type 2 diabetes display mild deficits in glucose-stimulated insulin secretion, insulin resistance, and hyperglycemia. We hypothesized that GK rats display ED which is associated with decreased nitric oxide (NO) bioavailability. Methods. Wistar and GK rats were used at 10 and 18 weeks of age. Changes in the ratio of intracavernosal pressure/mean arterial pressure (ICP/MAP) after electrical stimulation of cavernosal nerve were determined in vivo. Cavernosal contractility was induced by electrical field stimulation (EFS) and phenylephrine (PE). In addition, nonadrenergic-noncholinergic (NANC)- and sodium nitroprusside (SNP)-induced relaxation were determined. Cavernosal neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) mRNA and protein expression were also measured. Main Outcome Measure. GK diabetic rats display ED associated with decreased cavernosal expression of eNOS protein. Results. GK rats at 10 and 18 weeks demonstrated impaired erectile function represented by decreased ICP/MAP responses. Ten-week-old GK animals displayed increased PE responses and no changes in EFS-induced contraction. Conversely, contractile responses to EFS and PE were decreased in cavernosal tissue from GK rats at 18 weeks of age. Moreover, GK rats at 18 weeks of age displayed increased NANC-mediated relaxation, but not to SNP. In addition, ED was associated with decreased eNOS protein expression at both ages. Conclusion. Although GK rats display ED, they exhibit changes in cavernosal reactivity that would facilitate erectile responses. These results are in contrast to those described in other experimental diabetes models. This may be due to compensatory mechanisms in cavernosal tissue to overcome restricted pre-penile arterial blood supply or impaired veno-occlusive mechanisms. Carneiro FS, Giachini FRC, Carneiro ZN, Lima VV, Ergul A, Webb RC, and Tostes RC. Erectile dysfunction in young non-obese type II diabetic Goto-Kakizaki rats is associated with decreased eNOS phosphorylation at Ser1177. J Sex Med 2010;7:3620-3634.
Resumo:
Background The clinical efficacy of IV infusion of lidocaine for treatment of equine endotoxemia has not been studied. Hypothesis Lidocaine infusion after exposure to lipopolysaccharide (LPS) will inhibit the inflammatory response and have inhibitory effects on the hemodynamic and cytokine responses to endotoxemia. Animals Twelve horses. Methods Two equal groups (n = 6): saline (GI) and lidocaine (GII). In all animals, endotoxin (500 ng/kg body weight [BW]) was injected intraperitoneally over 5 minutes. Twenty minutes later, animals received a bolus of GI or GII (1.3 mg/kg BW) over 5 minutes, followed by a 6-hour continuous rate infusion of GI or GII (0.05 mg/kg BW/min). Treatment efficacy was judged from change in arterial blood pressure, peripheral blood and peritoneal fluid (PF) variables (total and differential cell counts, enzyme activities, and cytokine concentrations), and clinical scores (CS) for behavioral evidence of abdominal pain or discomfort during the study. Results Compared with the control group, horses treated with lidocaine had significantly lower CS and serum and PF tumor necrosis factor-alpha (TNF-alpha) activity. At several time points in both groups, total and differential cell counts, glucose, total protein and fibrinogen concentrations, and alkaline phosphatase, creatine kinase, and TNF-alpha activities were significantly different from baseline values both in peripheral blood and in PF. Conclusions and Clinical Importance Lidocaine significantly decreased severity of CS and inhibited TNF-alpha activity in PF.
Resumo:
Introduction. Endothelin-1 (ET-1), a potent vasoconstrictor peptide, acts mainly through the Gprotein-coupled ET(A) receptor (ET(A)R). Increased vascular ET-1 production and constrictor sensitivity have been observed in various cardiovascular diseases, including hypertension, as well as erectile dysfunction. The internal pudendal artery (IPA) supplies blood to the vagina and clitoris. Inadequate blood flow through the IPA may lead to insufficient vaginal engorgement and clitoral tumescence. Aim. Characterize the effects of ET-1 on the IPA and clitoral artery (CA). Methods. IPA and CA from female Sprague Dawley rats (225-250 g) were mounted in myograph chambers. Arterial segments were submitted to increasing concentrations of ET-1 (10-10-10-6 M). Segments were incubated with the ET(A)R antagonist, atrasentan (10-8 M) or the Rho-kinase inhibitor, Y-27632 (10-6 M) 30 minutes prior to agonist exposure. All E(max) values are expressed as % KCl-induced maximal contraction. ET(A)R, RhoA, and Rho-kinase expression from IPA was evaluated by Western blot. mRNA of preproET-1, ET(A)R, ET(B)R, RhoA, and Rho-kinase were measured by real time PCR. Main Outcome Measures. ET-1 constrictor sensitivity in IPA and CA, protein expression and messenger RNA levels of ET-1-mediated constriction components. Results. ET-1 concentration-dependently contracted IPA (% Contraction and pD2, respectively: 156 +/- 18, 8.2 +/- 0.1) and CA (163 +/- 12, 8.8 +/- 0.08), while ET(A)R antagonism reduced ET-1-mediated contraction (IPA: 104 +/- 23, 6.4 +/- 0.2; CA: 112 +/- 17, 6.6 +/- 0.08). Pretreatment with Y-27632 significantly shifted ET-1 pD2 in IPA (108 +/- 24, 7.9 +/- 0.1) and CA (147 +/- 58 and 8.0 +/- 0.25). Protein expression of ET(A)R, ET(B)R, RhoA, and Rho-kinase were detected in IPA. IPA and CA contained preproET-1, ET(A)R, ET(B)R, RhoA, and Rho-kinase message. Conclusion. We observed that the IPA and CA are sensitive to ET-1, signaling through the ET(A)R and Rho-kinase pathway. These data indicate that ET-1 may play a role in vaginal and clitoral blood flow and may be important in pathologies where ET-1 levels are elevated. Allahdadi KJ, Hannan JL, Tostes RC, and Webb RC. Endothelin-1 induces contraction of female rat internal pudendal and clitoral arteries through ETA receptor and Rho-kinase activation. J Sex Med 2010;7:2096-2103.
Resumo:
Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 301: H409-H417, 2011. First published May 6, 2011; doi:10.1152/ajpheart.00084.2011.-Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-L-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip5I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5`-triphosphate tetrasodium salt (2-Thio-UTP; P2Y(2) agonist)-, uridine-5`-(gamma-thio)-triphosphate trisodium salt (UTP gamma S; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5`-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)Astimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.
Resumo:
This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.
Resumo:
Durand MT, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R418-R427, 2011. First published November 24, 2010; doi: 10.1152/ajpregu.00463.2010.-The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 +/- 2 to -64 +/- 3 mmHg) than in normotensive rats (-17 +/- 1 to -46 +/- 2 mmHg), whereas the bradycardic response was similar in both groups (-34 +/- 5 to -92 +/- 9 and -21 +/- 2 to -79 +/- 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 +/- 2 to -27 +/- 2 mmHg) and normotensive rats (-10 +/- 1 to -25 +/- 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious L-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of alpha(1)-adrenergic receptor.
Resumo:
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.
Resumo:
In the present study we evaluated the role of purinergic mechanisms in the PVN on the tonic modulation of the autonomic function to the cardiovascular system as well on the cardiovascular responses to peripheral chemoreflex activation in awake rats Guide-cannulae were bilaterally Implanted in the direction of the PVN of male Wistar rats Femoral artery and vein were catheterized one day before the experiments Chemoreflex was activated with KCN (30 mu g/0 05 ml iv) before and after microinjections of P2 receptors antagonist into the PVN Microinjection of PPADS a non selective P2X antagonist Into the PVN (n = 6) produced a significant increase in the baseline MAP (99 +/- 2 vs 112 +/- 3 mmHg) and HR (332 +/- 8 vs 375 +/- 8 bpm) but had no effect on the pressor and bradycardic responses to chemoreflex activation Intravenous injection of vasopres in receptors antagonist after microinjection of PPADS into the PVN produced no effect on the increased baseline MAP Simultaneous microinjection of PPADS and KYN into the PVN (n=6) had no effect in the baseline MAP HR or in the pressor and bradycardic responses to chemoreflex activation We conclude that P2 purinoceptors in the PVN are involved in the modulation of baseline autonomic function to the cardiovascular system but not in the cardiovascular responses to chemoreflex activation in awake rats (C) 2010 Elsevier B V All rights reserved
Resumo:
Aims: We assessed the effects of right atrial stretch on gastric tone and neuro-humoral pathways involved in this phenomenon. Main methods: Anesthetized male rats were submitted for monitoring of the mean arterial pressure (MAP) and central venous pressure (CVP). A balloon catheter positioned into the stomach monitored by plethysmography the gastric volume (GV). All rats were monitored for 55-min. After the first 20-min of monitoring (basal period), rats were either submitted to a 5-min interval of atrial stretch (AS) or maintained as controls. An intra-atrial balloon catheter was distended with 30,50, or 70 mu L of saline. GV and hemodynamic data were also monitored for a further 30-min. Another set of rats, either previously submitted to subdiaphragmaic vagotomy or splanchnicectomy plus celiac ganglionectomy or maintained as controls (sham), were also submitted to AS. Each subset consisted of six rats. The plasma level of the atrial natriuretic peptide (ANP) was measured in another group of rats. Data were compared by ANOVA followed by Bonferroni`s test. Key findings: In control rats, the GV, MAP, and CVP remained at stable levels throughout the studies. In addition to increase the CVP, AS also decreased (P<0.05) the GV by 14%, 11.5%, and 16.5% in the 30, 50, and 70 mu L groups, respectively. Vagotomy prevented the GV decrease. In contrast, the AS decreased (P<0.05) the GV by 21.3% in splanchnicectomized rats. Significance: AS decreased the GV of rats in a volume-dependent manner, a phenomenon prevented by vagotomy but enhanced by celiac ganglionectomy. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Santos FM, Dias DPM, Silva CAA, Fazan Jr R, Salgado HC. Sympathetic activity is not increased in L-NAME hypertensive rats. Am J Physiol Regul Integr Comp Physiol 298: R89-R95, 2010. First published November 4, 2009; doi:10.1152/ajpregu.00449.2009.-The role played by the sympathetic drive in the development of N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension is not firmly established. Therefore, the present study was undertaken in conscious rats in which hypertension was induced by treatment with L-NAME over the course of either 2 or 14 days. Mean arterial pressure (MAP) was measured via a catheter placed in the femoral artery, drugs were administered via a cannula placed in the femoral vein, and renal sympathetic nerve activity (RSNA) was monitored using an implanted electrode. Despite the remarkable increase in arterial pressure, heart rate did not change after treatment with L-NAME. RSNA was similar in L-NAME-induced hypertensive rats treated over the course of 2 or 14 days, as well as in normotensive rats. It was also demonstrated that L-NAME-induced hypertensive rats displayed a resetting of the baroreflex control of RSNA to hypertensive levels, with decreased sensitivity over the course of 2 or 14 days. Furthermore, the sympathetic-vagal balance examined in the time and frequency domain and the renal and plasma norepinephrine content did not differ between groups. In conclusion, the evaluation of the sympathetic drive in conscious rats demonstrated that the arterial hypertension induced by L-NAME treatment over the course of 2 and 14 days does not show sympathetic overactivity.