981 resultados para Variable frequency drives
Resumo:
Background: Nausea can be a debilitating symptom for patients with a life-limiting illness. While addressing reversible components, nonpharmacological strategies and antiemetics are the main therapeutic option. The choice of medication, dose, and route of administration remain highly variable. Objective: The aim of this study was to codify the current clinical approaches and quantify any variation found nationally. Methods: A cross-sectional study utilizing a survey of palliative medicine clinicians examined prescribing preferences for nausea using a clinical vignette. Respondent characteristics, the use of nonpharmacological interventions, first- and second-line antiemetic choices, commencing and maximal dose, and time to review were collected. Results: Responding clinicians were predominantly working in palliative medicine across a range of settings with a 49% response rate (105/213). The main nonpharmacological recommendation was “small, frequent snacks.” Metoclopramide was the predominant first-line agent (69%), followed by haloperidol (26%), while second-line haloperidol was the predominant agent (47%), with wide variation in other nominated agents. Respondents favoring metoclopramide as first-line tended to use haloperidol second-line (65%), but not vice versa. Maximal doses for an individual antiemetic varied up to tenfold. Conclusion: For nausea, a commonly encountered symptom in palliative care, clinicians' favored metoclopramide and haloperidol; however, after these choices, there was large variation in antiemetic selection. While most clinicians recommended modifying meal size and frequency, use of other nonpharmacological therapies was limited.
Resumo:
Objective Migraine is a highly disabling disease affecting a significant proportion of the Australian population. The Methylenetetrahydrofolate Reductase (MTHFR) C677T variant has been associated with increased levels of homocysteine and risk of migraine with aura (MA). Folic acid, Vitamin B6 and B12 supplementation has been previously shown to reduce increased levels of homocysteine and decrease migraine symptoms. However the influence of dietary folate intake on migraine has been unclear. The aim of the current study was to analyse the association of dietary folate intake in the form of dietary folate equivalent (DFE), folic acid (FA) and total food folate (TFF) on migraine frequency, severity and disability. Methods A cohort of 141 adult females of Caucasian descent with MA was genotyped for the MTHFRC677T variant using restriction enzyme digestion. Dietary folate information was collected from all participants and analysed using the “FoodWorks” 2009 package. Folate consumption was compared to migraine frequency, severity and disability using linear regression. Results A significant inverse relation was observed between DFE [R2= 0.201, P= 0.045, CI (-0.004, -0.001)] and FA [R2= 0.255, P= 0.036, 95% CI (-0.009, -0.002)] consumption and migraine frequency. It was also observed that in individuals with the CC genotype for the MTHFR C677T variant, migraine frequency was significantly linked to FA consumption [R2= 0.077, P= 0.029, CI (-0.009, -0.005)]. Conclusions The results from this study indicate that folate intake in the form of folic acid may influence migraine frequency in female MA sufferers.
Resumo:
This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.
Resumo:
Background: Hot air ballooning incidents are relatively rare, however, when they do occur they are likely to result in a fatality or serious injury. Human error is commonly attributed as the cause of hot air ballooning incidents; however, error in itself is not an explanation for safety failures. This research aims to identify, and establish the relative importance of factors contributing towards hot air ballooning incidents. Methods: Twenty-two Australian Ballooning Federation (ABF) incident reports were thematically coded using a bottom up approach to identify causal factors. Subsequently, 69 balloonists (mean 19.51 years’ experience) participated in a survey to identify additional causal factors and rate (out of seven) the perceived frequency and potential impact to ballooning operations of each of the previously identified causal factors. Perceived associated risk was calculated by multiplying mean perceived frequency and impact ratings. Results: Incident report coding identified 54 causal factors within nine higher level areas: Attributes, Crew resource management, Equipment, Errors, Instructors, Organisational, Physical Environment, Regulatory body and Violations. Overall, ‘weather’, ‘inexperience’ and ‘poor/inappropriate decisions’ were rated as having greatest perceived associated risk. Discussion: Although errors were nominated as a prominent cause of hot air ballooning incidents, physical environment and personal attributes are also particularly important for safe hot air ballooning operations. In identifying a range of causal factors the areas of weakness surrounding ballooning operations have been defined; it is hoped that targeted safety and training strategies can now be put into place removing these contributing factors and reducing the chance of pilot error.
Resumo:
The sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi. The auditory nerve of the kiwi contained about 8,000 fibers. Using the number of hair cells and innervating nerve fibers to calculate a ratio of average innervation density showed that the afferent innervation ratio in kiwi was denser than in most other birds examined. The average diameters of cochlear afferent axons in kiwi showed the typical gradient across the tonotopic axis. The kiwi basilar papilla showed a clear differentiation of tall and short hair cells. The proportion of short hair cells was higher than in the emu and likely reflects a bias towards higher frequencies represented on the kiwi basilar papilla. The orientation of the stereovillar bundles in the kiwi basilar papilla showed a pattern similar to that in most other birds but was most similar to that of the emu. Overall, many features of the auditory nerve, hair cells, and stereovilli bundle orientation in the kiwi are typical of most birds examined. Some features of the kiwi auditory system do, however, support a high-frequency specialization, specifically the innervation density and generally small size of hair-cell somata, whereas others showed the presumed ancestral condition similar to that found in the emu.
Resumo:
The intermediate leaf-nosed bat (Hipposideros larvatus) is a medium-sized bat distributed throughout the Indo-Malay region. In north-east India, bats identified as H. larvatus captured at a single cave emitted echolocation calls with a bimodal distribution of peak frequencies, around either 85 kHz or 98 kHz. Individuals echolocating at 85 kHz had larger ears and longer forearms than those echolocating at 98 kHz, although no differences were detected in either wing morphology or diet, suggesting limited resource partitioning. A comparison of mitochondrial control region haplotypes of the two phonic types with individuals sampled from across the Indo-Malay range supports the hypothesis that, in India, two cryptic species are present. The Indian 98-kHz phonic bats formed a monophyletic clade with bats from all other regional populations sampled, to the exclusion of the Indian 85-kHz bats. In India, the two forms showed 12–13% sequence divergence and we propose that the name Hipposideros khasiana for bats of the 85-kHz phonic type. Bats of the 98-kHz phonic type formed a monophyletic group with bats from Myanmar, and corresponded to Hipposideros grandis, which is suggested to be a species distinct from Hipposideros larvatus. Differences in echolocation call frequency among populations did not reflect phylogenetic relationships, indicating that call frequency is a poor indicator of evolutionary history. Instead, divergence in call frequency probably occurs in allopatry, possibly augmented by character displacement on secondary contact to facilitate intraspecific communication.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.
Resumo:
Large concentrations of magnetite in sedimentary deposits and soils with igneous parent material have been reported to affect geophysical sensor performance. We have undertaken the first systematic experimental effort to understand the effects of magnetite for ground-penetrating radar (GPR) characterization of the shallow subsurface. Laboratory experiments were conducted to study how homogeneous magnetite-sand mixtures and magnetite concentrated in layers affect the propagation behavior (velocity, attenuation) of high-frequency GPR waves and the reflection characteristics of a buried target. Important observations were that magnetite had a strong effect on signal velocity and reflection, at magnitudes comparable to what has been observed in small-scale laboratory experiments that measured electromagnetic properties of magnetite-silica mixtures. Magnetite also altered signal attenuation and affected the reflection characteristics of buried targets. Our results indicated important implications for several fields, including land mine detection, Martian exploration, engineering, and moisture mapping using satellite remote sensing and radiometers.