929 resultados para VOLCANO CURVE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the JC-10 cruise (2007), we sampled the Darwin mud volcano (MV) for meiofaunal community and trophic structure in relation of pore-water geochemistry along a 10 m transect from a seep site on the rim of the crater towards the MV slope. Sediment samples were retrieved by the ROV Isis using push cores. On board and after the pore water extraction, the top 10 cm of the cores were sliced into 1 cm sections and fixed them in 4% formaldehyde for meiofaunal community analysis. In the home laboratory, the formaldehyde-fixed samples were washed over a 32 µm mesh sieve and extracted the meiofauna from the sediment by Ludox centrifugation (Heip et al. 1985). Meiofauna was then sorted, enumerated and identified at coarse taxonomic level. From each slice, ca. 100 nematodes were identified to genus level. Afterwards, abundance of Nematoda were depth integrated over the top 5 cm to gain individual abundances per 10 cm**2. Overall, total nematode biomass in the top 5 cm of the seep sediment core was ~10x higher than that in the core taken 1100 m away. Nematode genus composition varied little among cores and was mainly dominated by Sabatieria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfate reduction (SR) and anaerobic oxidation of methane (AOM) were measured ex situ by the whole core injection method (doi:10.1080/01490457809377722). We incubated the samples at in situ temperature (1.0°C) for 12 hours with either 14** CH4 (dissolved in water, 2.5 kBq) or carrier-free 35** SO4 (dissolved in water, 50 kBq). Sediment was fixed in 25 ml 2.5% sodium hydroxide (NaOH) solution or 20 ml 20% ZnAc solution for AOM or SR, respectively. Turnover rates were measured as previously described (http://edoc.mpg.de/177065; doi:10.4319/lom.2004.2.171).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfate reduction (SR) and anaerobic oxidation of methane (AOM) were measured ex situ by the whole core injection method (doi:10.1080/01490457809377722). We incubated the samples at in situ temperature (1.0°C) for 12 hours with either 14** CH4 (dissolved in water, 2.5 kBq) or carrier-free 35** SO4 (dissolved in water, 50 kBq). Sediment was fixed in 25 ml 2.5% sodium hydroxide (NaOH) solution or 20 ml 20% ZnAc solution for AOM or SR, respectively. Turnover rates were measured as previously described (http://edoc.mpg.de/177065; doi:10.4319/lom.2004.2.171).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pore water and turnover rates were determined for surface sediment cores obtained in 2009 and 2010. The pore water was extracted with Rhizons (Rhizon CSS: length 5 cm, pore diameter 0.15 µm; Rhizosphere Research Products, Wageningen, Netherlands) in 1 cm-resolution and immediately fixed in 5% zinc acetate (ZnAc) solution for sulfate, and sulfide analyses. The samples were diluted, filtered and the concentrations measured with non-suppressed anion exchange chromatography (Waters IC-Pak anion exchange column, waters 430 conductivity detector). The total sulfide concentrations (H2S + HS- + S**2-) were determined using the diamine complexation method (doi:10.4319/lo.1969.14.3.0454). Samples for dissolved inorganic carbon (DIC) and alkalinity measurements were preserved by adding 2 µl saturated mercury chloride (HgCl2) solution and stored headspace-free in gas-tight glass vials. DIC and alkalinity were measured using the flow injection method (detector VWR scientific model 1054) (doi:10.4319/lo.1992.37.5.1113). Dissolved sulfide was eliminated prior to the DIC measurement by adding 0.5 M molybdate solution (doi:10.4319/lo.1995.40.5.1011). Nutrient subsamples (10 - 15 ml) were stored at - 20 °C prior to concentration measurements with a Skalar Continuous-Flow Analyzer (doi:10.1002/9783527613984).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pore water and turnover rates were determined for surface sediment cores obtained in 2009 and 2010. The pore water was extracted with Rhizons (Rhizon CSS: length 5 cm, pore diameter 0.15 µm; Rhizosphere Research Products, Wageningen, Netherlands) in 1 cm-resolution and immediately fixed in 5% zinc acetate (ZnAc) solution for sulfate, and sulfide analyses. The samples were diluted, filtered and the concentrations measured with non-suppressed anion exchange chromatography (Waters IC-Pak anion exchange column, waters 430 conductivity detector). The total sulfide concentrations (H2S + HS- + S**2-) were determined using the diamine complexation method (doi:10.4319/lo.1969.14.3.0454). Samples for dissolved inorganic carbon (DIC) and alkalinity measurements were preserved by adding 2 µl saturated mercury chloride (HgCl2) solution and stored headspace-free in gas-tight glass vials. DIC and alkalinity were measured using the flow injection method (detector VWR scientific model 1054) (doi:10.4319/lo.1992.37.5.1113). Dissolved sulfide was eliminated prior to the DIC measurement by adding 0.5 M molybdate solution (doi:10.4319/lo.1995.40.5.1011). Nutrient subsamples (10 - 15 ml) were stored at - 20 °C prior to concentration measurements with a Skalar Continuous-Flow Analyzer (doi:10.1002/9783527613984).