956 resultados para VISIBLE LUMINESCENCE
Resumo:
Luminescence and energy transfer in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] (x ≈ 0.01, y = 0.006 − 0.22; bpy = 2,2‘-bipyridine, ox = C2O42-) and [Zn1-x-yRuxOsy(bpy)3][NaAl(ox)3] (x ≈ 0.01, y = 0.012) are presented and discussed. Surprisingly, the luminescence of the isolated luminophores [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn(bpy)3][NaAl(ox)3] is hardly quenched at room temperature. Steady-state luminescence spectra and decay curves show that energy transfer occurs between [Ru(bpy)3]2+ and [Cr(ox)3]3- and between [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] and [Zn1-x-yRuxOsy(bpy)3] [NaAl(ox)3], respectively. For a quantitative investigation of the energy transfer, a shell type model is developed, using a Monte Carlo procedure and the structural parameters of the systems. A good description of the experimental data is obtained assuming electric dipole−electric dipole interaction between donors and acceptors, with a critical distance Rc for [Ru(bpy)3]2+ to [Cr(ox)3]3- energy transfer of 15 Å and for [Ru(bpy)3]2+ to [Os(bpy)3]2+ energy transfer of 33 Å. These values are in good agreement with those derived using the Förster−Dexter theory.
Resumo:
During the last decade, DNA profiling and the use of DNA databases have become two of the most employed instruments of police investigations. This very rapid establishment of forensic genetics is yet far from being complete. In the last few years novel types of analyses have been presented to describe phenotypically a possible perpetrator. We conducted the present study among German speaking Swiss residents for two main reasons: firstly, we aimed at getting an impression of the public awareness and acceptance of the Swiss DNA database and the perception of a hypothetical DNA database containing all Swiss residents. Secondly, we wanted to get a broader picture of how people that are not working in the field of forensic genetics think about legal permission to establish phenotypic descriptions of alleged criminals by genetic means. Even though a significant number of study participants did not even know about the existence of the Swiss DNA database, its acceptance appears to be very high. Generally our results suggest that the current forensic use of DNA profiling is considered highly trustworthy. However, the acceptance of a hypothetical universal database would be only as low as about 30% among the 284 respondents to our study, mostly because people are concerned about the security of their genetic data, their privacy or a possible risk of abuse of such a database. Concerning the genetic analysis of externally visible characteristics and biogeographical ancestry, we discover a high degree of acceptance. The acceptance decreases slightly when precise characteristics are presented to the participants in detail. About half of the respondents would be in favor of the moderate use of physical traits analyses only for serious crimes threatening life, health or sexual integrity. The possible risk of discrimination and reinforcement of racism, as discussed by scholars from anthropology, bioethics, law, philosophy and sociology, is mentioned less frequently by the study participants than we would have expected. A national DNA database and the widespread use of DNA analyses for police and justice have an impact on the entire society. Therefore the concerns of lay persons from the respective population should be heard and considered. The aims of this study were to draw a broader picture of the public opinion on DNA databasing and to contribute to the debate about the possible future use of genetics to reveal phenotypic characteristics. Our data might provide an additional perspective for experts involved in regulatory or legislative processes.
Resumo:
During time-resolved optical stimulation experiments (TR-OSL), one uses short light pulses to separate the stimulation and emission of luminescence in time. Experimental TR-OSL results show that the luminescence lifetime in quartz of sedimentary origin is independent of annealing temperature below 500 °C, but decreases monotonically thereafter. These results have been interpreted previously empirically on the basis of the existence of two separate luminescence centers LH and LL in quartz, each with its own distinct luminescence lifetime. Additional experimental evidence also supports the presence of a non-luminescent hole reservoir R, which plays a critical role in the predose effect in this material. This paper extends a recently published analytical model for thermal quenching in quartz, to include the two luminescence centers LH and LL, as well as the hole reservoir R. The new extended model involves localized electronic transitions between energy states within the two luminescence centers, and is described by a system of differential equations based on the Mott–Seitz mechanism of thermal quenching. It is shown that by using simplifying physical assumptions, one can obtain analytical solutions for the intensity of the light during a TR-OSL experiment carried out with previously annealed samples. These analytical expressions are found to be in good agreement with the numerical solutions of the equations. The results from the model are shown to be in quantitative agreement with published experimental data for commercially available quartz samples. Specifically the model describes the variation of the luminescence lifetimes with (a) annealing temperatures between room temperature and 900 °C, and (b) with stimulation temperatures between 20 and 200 °C. This paper also reports new radioluminescence (RL) measurements carried out using the same commercially available quartz samples. Gaussian deconvolution of the RL emission spectra was carried out using a total of seven emission bands between 1.5 and 4.5 eV, and the behavior of these bands was examined as a function of the annealing temperature. An emission band at ∼3.44 eV (360 nm) was found to be strongly enhanced when the annealing temperature was increased to 500 °C, and this band underwent a significant reduction in intensity with further increase in temperature. Furthermore, a new emission band at ∼3.73 eV (330 nm) became apparent for annealing temperatures in the range 600–700 °C. These new experimental results are discussed within the context of the model presented in this paper.
Resumo:
The optical and luminescence properties of CaI2 and NaCl doped with divalent thulium are reported for solar energy applications. These halides strongly absorb solar light from the UV up to 900 nm due to the intense Tm2+ 4f13→4f125d1 electronic transitions. Absorption is followed by emission of 1140 nm light due to the 2F5/2→2F7/2 transition of the 4f13 configuration that can be efficiently converted to electric power by thin film CuInSe2 (CIS) solar cells. Because of a negligible spectral overlap between absorption and emission spectra, a luminescent solar concentrator (LSC) based on these black luminescent materials would not suffer from self-absorption losses. The Tm2+ doped halides may therefore lead to efficient semi-transparent power generating windows that absorb solar light over the whole visible spectrum. It will be shown that the power efficiency of the Tm2+ based LSCs can be up to four times higher compared to LSCs based on organic dyes or quantum dots.