944 resultados para VACCINE CANDIDATE
Resumo:
This paper examines competition in the standard one-dimensional Downsian model of two-candidate elections, but where one candidate (A) enjoys an advantage over the other candidate (D). Voters' preferences are Euclidean, but any voter will vote for candidate A over candidate D unless D is closer to her ideal point by some fixed distance \delta. The location of the median voter's ideal point is uncertain, and its distribution is commonly known by both candidates. The candidates simultaneously choose locations to maximize the probability of victory. Pure strategy equilibria often fails to exist in this model, except under special conditions about \delta and the distribution of the median ideal point. We solve for the essentially unique symmetric mixed equilibrium, show that candidate A adopts more moderate policies than candidate D, and obtain some comparative statics results about the probability of victory and the expected distance between the two candidates' policies.
Resumo:
Background. Few data are available regarding the immunogenicity and safety of the pandemic influenza vaccine in immunocompromised patients. We evaluated the humoral response to the influenza A H1N1/09 vaccine in solid-organ transplant (SOT) recipients, in patients with human immunodeficiency virus (HIV) infection, and in healthy individuals. Methods. Patients scheduled to receive the pandemic influenza vaccine were invited to participate. All participants received the influenza A H1N1/09 AS03-adjuvanted vaccine containing 3.75 μg of hemagglutinin. SOT recipients and HIV-infected patients received 2 doses at 3-week intervals, whereas control subjects received 1 dose. Blood samples were taken at day 0, day 21, and day 49 after vaccination. Antibody responses were measured with the hemagglutination inhibition assay (HIA) and a microneutralization assay. Results. Twenty-nine SOT recipients, 30 HIV-infected patients, and 30 healthy individuals were included in the study. Seroconversion measured by HIA was observed in 15 (52%) of 29 SOT recipients both at day 21 and day 49; in 23 (77%) of 30 at day 21 and 26 (87%) of 30 at day 49 in HIV-infected patients, and in 20 (67%) of 30 at day 21 and in 23 (77%) of 30 at day 49 in control subjects (P = .12 at day 21 and P = .009 at day 49, between groups). Geometric means of antibody titers were not significantly different between groups at day 21 or at day 49. Conclusions. Influenza A H1N1/09 vaccine elicited a similar antibody response in HIV-infected individuals and in control subjects, whereas SOT recipients had an overall lower response. A second dose of the vaccine only moderately improved vaccine immunogenicity in HIV-infected patients.
Resumo:
DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. The mode of plasmid DNA delivery is critical to make progress in DNA vaccination. Using human papillomavirus type 16 E7 as a model antigen, this study evaluated the effect of peptide-polymer hybrid including PEI600-Tat conjugate as a novel gene delivery system on the potency of antigen-specific immunity in mice model. At ratio of 10:50 PEI-Tat/E7DNA (w/w), both humoral and cellular immune responses were significantly enhanced as compared with E7DNA construct and induced Th1 response. Therefore, this new delivery system could have promising applications in gene therapy.
Resumo:
Type 2 diabetes is a polygenic and genetically heterogeneous disease . The age of onset of the disease is usually late and environmental factors may be required to induce the complete diabetic phenotype. Susceptibility genes for diabetes have not yet been identified. Islet-brain-1 (IB1, encoded by MAPK8IP1), a novel DNA-binding transactivator of the glucose transporter GLUT2 (encoded by SLC2A2), is the homologue of the c-Jun amino-terminal kinase-interacting protein-1 (JIP-1; refs 2-5). We evaluated the role of IBi in beta-cells by expression of a MAPK8IP1 antisense RNA in a stable insulinoma beta-cell line. A 38% decrease in IB1 protein content resulted in a 49% and a 41% reduction in SLC2A2 and INS (encoding insulin) mRNA expression, respectively. In addition, we detected MAPK8IP1 transcripts and IBi protein in human pancreatic islets. These data establish MAPK8IP1 as a candidate gene for human diabetes. Sibpair analyses performed on i49 multiplex French families with type 2 diabetes excluded MAPK8IP1 as a major diabetogenic locus. We did, however, identify in one family a missense mutation located in the coding region of MAPK8IP1 (559N) that segregated with diabetes. In vitro, this mutation was associated with an inability of IB1 to prevent apoptosis induced by MAPK/ERK kinase kinase 1 (MEKK1) and a reduced ability to counteract the inhibitory action of the activated c-JUN amino-terminal kinase (JNK) pathway on INS transcriptional activity. Identification of this novel non-maturity onset diabetes of the young (MODY) form of diabetes demonstrates that IB1 is a key regulator of 3-cell function.
Resumo:
To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.
Resumo:
More knowledge on the reasons for refusal of the influenza vaccine in elderly patients is essential to target groups for additional information, and hence improve coverage rate. The objective of the present study was to describe precisely the true motives for refusal. All patients aged over 64 who attended the Medical Outpatient Clinic, University of Lausanne, or their private practitioner's office during the 1999 and 2000 vaccination periods were included. Each patient was informed on influenza and its complications, as well as on the need for vaccination, its efficacy and adverse events. The vaccination was then proposed. In case of refusal, the reasons were investigated with an open question. Out of 1398 patients, 148 (12%) refused the vaccination. The main reasons for refusal were the perception of being in good health (16%), of not being susceptible to influenza (15%), of not having had the influenza vaccine in the past (15%), of having had a bad experience either personally or a relative (15%), and the uselessness of the vaccine (10%). Seventeen percent gave miscellaneous reasons and 12% no reason at all for refusal. Little epidemiological knowledge and resistance to change appear to be the major obstacles for wide acceptance of the vaccine by the elderly.
Resumo:
Background: Immunogenicity of standard infl uenza vaccine is suboptimal in lung transplant recipients. Intradermal vaccine may elicit stronger responses due to recruitment of local dendritic cells. We compared the immunogenicity of the infl uenza vaccine administered intradermally (ID) to the standard intramuscular (IM) vaccination. Methods: In this investigator-blinded, two-center, prospective trial, lung transplant patients were randomized to receive intradermal (6ug) or intramuscular (15ug) 2008/9 trivalent inactivated infl uenza vaccine. Immunogenicity was evaluated using a standard hemagglutination inhibition assay (HIA). Response to the vaccine was defi ned as a fourfold increase of the HIA levels for any of the 3 viral strains in the vaccine. Geometric mean titers (GMT) and seroprotection rate (HIA ≥32) were also analyzed. Patients were followed during 6 months for the development of infl uenza or acute rejection. Results: We randomized 84 patients to receive the ID (n=41) vs. IM (n=43) vaccine, respectively. Baseline characteristics were similar between groups. Median time from transplantation was 3.4 yrs (ID) vs. 3.3 yrs (IM) (p=0.84). Vaccine response to at least one antigen was seen in 6/41 (14.6%) patients in the ID vs. 8/43 (18.6%) in the IM group (p=0.77). In the ID group, GMTs (95% CI) after vaccination were 15.7 (11.1-22.3) for H1N1, 84.0 (52.0-135.7) for H3N2, and 14.5 (9.6-21.8) for B strains vs. in the IM group 17.5 (11.8-25.9) for H1N1, 108.9 (77.5-153.2) for H3N2, and 20.2 (12.8-31.9) for B (p=NS, all 3 strains). Seroprotection was 39% (H1N1), 82.9% (H3N2) and 29.3% (B strain) in the ID group vs. 27.9% (H1N1), 97.7% (H3N2) and 58.1% (B strain) in the IM group. No factors associated with vaccine response were identifi ed. Mild adverse events were seen in 44% of patients (ID) vs. 34% (IM) (p=0.38). Two patients (4.8%) in the ID group developed infl uenza infection compared to none in the IM group. Two patients in each group developed biopsy-proven acute rejection during follow-up. Conclusions: Immunogenicity of the 2008/09 infl uenza vaccine was poor in lung transplant recipients. ID administration of the vaccine elicited similar immune responses to standard IM vaccination. Novel strategies of vaccination are needed to protect lung transplant recipients from infl uenza.
Saponins from the Spanish saffron Crocus sativus are efficient adjuvants for protein-based vaccines.
Resumo:
Protein and peptide-based vaccines provide rigorously formulated antigens. However, these purified products are only weakly immunogenic by themselves and therefore require the addition of immunostimulatory components or adjuvants in the vaccine formulation. Various compounds derived from pathogens, minerals or plants, possess pro-inflammatory properties which allow them to act as adjuvants and contribute to the induction of an effective immune response. The results presented here demonstrate the adjuvant properties of novel saponins derived from the Spanish saffron Crocus sativus. In vivo immunization studies and tumor protection experiments unambiguously establish the value of saffron saponins as candidate adjuvants. These saponins were indeed able to increase both humoral and cellular immune responses to protein-based vaccines, ultimately providing a significant degree of protection against tumor challenge when administered in combination with a tumor antigen. This preclinical study provides an in depth immunological characterization of a new saponin as a vaccine adjuvant, and encourages its further development for use in vaccine formulations.
Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif.
Resumo:
To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.
Resumo:
Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.
Resumo:
BACKGROUND: Tobacco dependence is the leading cause of preventable death and disabilities worldwide and nicotine is the main substance responsible for the addiction to tobacco. A vaccine against nicotine was tested in a 6-month randomized, double blind phase II smoking cessation study in 341 smokers with a subsequent 6-month follow-up period. METHODOLOGY/PRINCIPAL FINDINGS: 229 subjects were randomized to receive five intramuscular injections of the nicotine vaccine and 112 to receive placebo at monthly intervals. All subjects received individual behavioral smoking cessation counseling. The vaccine was safe, generally well tolerated and highly immunogenic, inducing a 100% antibody responder rate after the first injection. Point prevalence of abstinence at month 2 showed a statistically significant difference between subjects treated with Nicotine-Qbeta (47.2%) and placebo (35.1%) (P = 0.036), but continuous abstinence between months 2 and 6 was not significantly different. However, in subgroup analysis of the per-protocol population, the third of subjects with highest antibody levels showed higher continuous abstinence from month 2 until month 6 (56.6%) than placebo treated participants (31.3%) (OR 2.9; P = 0.004) while medium and low antibody levels did not increase abstinence rates. After 12 month, the difference in continuous abstinence rate between subjects on placebo and those with high antibody response was maintained (difference 20.2%, P = 0.012). CONCLUSIONS: Whereas Nicotine-Qbeta did not significantly increase continuous abstinence rates in the intention-to-treat population, subgroup analyses of the per-protocol population suggest that such a vaccination against nicotine can significantly increase continuous abstinence rates in smokers when sufficiently high antibody levels are achieved. Immunotherapy might open a new avenue to the treatment of nicotine addiction. TRIAL REGISTRATION: Swiss Medical Registry 2003DR2327; ClinicalTrials.gov NCT00369616.
Resumo:
Broadly neutralizing antibodies reactive against most and even all variants of the same viral species have been described for influenza and HIV-1 (ref. 1). However, whether a neutralizing antibody could have the breadth of range to target different viral species was unknown. Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are common pathogens that cause severe disease in premature newborns, hospitalized children and immune-compromised patients, and play a role in asthma exacerbations. Although antisera generated against either HRSV or HMPV are not cross-neutralizing, we speculated that, because of the repeated exposure to these viruses, cross-neutralizing antibodies may be selected in some individuals. Here we describe a human monoclonal antibody (MPE8) that potently cross-neutralizes HRSV and HMPV as well as two animal paramyxoviruses: bovine RSV (BRSV) and pneumonia virus of mice (PVM). In its germline configuration, MPE8 is HRSV-specific and its breadth is achieved by somatic mutations in the light chain variable region. MPE8 did not result in the selection of viral escape mutants that evaded antibody targeting and showed potent prophylactic efficacy in animal models of HRSV and HMPV infection, as well as prophylactic and therapeutic efficacy in the more relevant model of lethal PVM infection. The core epitope of MPE8 was mapped on two highly conserved anti-parallel β-strands on the pre-fusion viral F protein, which are rearranged in the post-fusion F protein conformation. Twenty-six out of the thirty HRSV-specific neutralizing antibodies isolated were also found to be specific for the pre-fusion F protein. Taken together, these results indicate that MPE8 might be used for the prophylaxis and therapy of severe HRSV and HMPV infections and identify the pre-fusion F protein as a candidate HRSV vaccine.