944 resultados para UV-curing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indiscriminate and inappropriate use of pesticides in agriculture has been pointed out for increasing health problems and environmental damage. Considering that water resources are the principal destiny of those compounds after application, the present study presents optimization and validation of two simple and effi cient analytical methods for pesticides quantifi cation in both surface and groundwater. Were selected the pesticides more commonly used at Dourados (MS - Brazil), region with intense agricultural activity. Pesticides were preconcentrated by solid-phase extraction using C18 (500 mg) cartridges and then divided in two groups for elution and quantifi cation: 2.4-D and 2.4-DCP were eluted with methanol and quantifi ed by high performance liquid chromatography with ultra-violet detector (HPLC-UV) while atrazine, DIA, DEA, trifl uralin and methyl parathion were eluted with ethylacetate (1:1, v/v) and quantifi ed by gas chromatography with thermionic specifi c detector (GC-TSD). The methods showed satisfactory accuracy (76-107%) and precision (<12%) for the substances analyzed at the fortifi ed levels selected for the study, except for DIA (<51%). Study of pesticide stability also presented good results: C18 cartridges could be stored for at least for 21 days at -20ºC with no signs of the compounds degradability. Both methods limits of quantifi cation of the pesticides (0.22 - 0.48 μg L-1) are in accordance to the levels currently established by the Brazilian national legislation for pesticides in water. Although only the pesticide 2.4-D has been detected in two distinct collection points in the study period of time, this work warns for the requirement of systematical analysis of pesticides presence in water destined to human consume, principally in areas of intense agriculture activity. Such monitoring can provide subsidies for public environmental policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the development and validation of a simple and sensitive method that uses solid phase extraction (SPE) and liquid chromatography with ultraviolet detection to analyze fluoxetine (FLX) and norfluoxetine (NFLX) in human plasma samples. A lab-made C18 SPE phase was synthesized by using a sol–gel process employing a low-cost silica precursor. This sorbent was fully characterized by nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) to check the particles' shape, size and C18 functionalization. The lab-made C18 silica was used in the sample preparation step of human plasma by the SPE-HPLC-UV method. The method was validated in the 15 to 500 ng mL 1 range for both FLX and NFLX using a matrix matched curve. Detection limits of 4.3 and 4.2 ng mL 1 were obtained for FLX and NFLX, respectively. The repeatability and intermediary precision achieved varied from 7.6 to 15.0% and the accuracy ranged from 14.9 to 9.1%. The synthesized C18 sorbent was compared to commercial C18 sorbents. The average recoveries were similar (85–105%), however the lab-made C18 silica showed fewer interfering peaks in the chromatogram. After development and validation, the method using the lab-made C18 SPE was applied to plasma samples of patients under FLX treatment (n ¼ 6). The concentrations of FLX and NFLX found in the samples varied from 46.8–215.5 and 48.0–189.9 ng mL 1 , respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar waveguides with controlled refractive index were produced using thin films of sol-gel derived organic-inorganic hybrids, so called di-ureasils. Spectroscopic ellipsometry was used to characterize the films thickness and refractive index. UV-laser direct-writing method was used to produce Y-splitter structures with coupling ratio of 50% without the need of photoinitiators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotechnology, the science of minuscule, has developed products which are able t o manipulate atoms and molecules that could be applied in the sterilization process of dental instruments. Objetives: The objective of the present study was to evaluate the self-cleaning action of TiO2 and Ag nanoparticles coating on dental instruments by the photocataliys process under UV and visible light irradiation. Material and method: Microbiologic tests were done using dental cement spatulas coated with TiO2 and Ag nanoparticles (one or three layers), and contaminated with 10 mcrl of Pseudomonas aeruginosa and Enterococcus faecalis, respectively. After contamination, they were exposed to ultraviolet light and visible light for 120 minutes. Next, they were transferred to and stored in test tubes with BHI (Brain Heart Infusion) and incubated in 35 to 37 °C. Checking times for bacterial growth and for control and retrieval tests were done at: 24, 48, 72 and 96 hours. Result: The Pseudomonas aeruginosa was inactive after 120 minutes of ultraviolet light irradiation, thus confirming the heterogeneous photocatalytic activity of TiO2 and Ag. The Pseudomonas aeruginosa was not inactivated under visible light irradiation and the Enterococcus faecalis was not inactivated under UV and visible light irradiation of the dental cement spatulas coated with TiO2 and Ag nanoparticles in the readings to 96 hours, showing bacterial growth. Conclusion: There were no influence of one or three layers of TiO2 and Ag nanoparticles coating of the spatulas in the results. The heterogeneous photocatalysis activity of TiO2 and Ag under UV light irradiation was confirmed for Pseudomonas aeruginosa but not under visible light. Enterococcus faecalis did not confirmed the photocatalytics activity of TiO2 and Ag under UV light irradiation and visible lights irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: This study evaluated the effect of light-activation on the antibacterial activity of dentin bonding systems. Methods: Inocula of Streptococcus mutans and Lactobacillus casei cultures were spread on the surface of BHI agar and the materials were applied and subjected or not to light-activation. Zones of bacterial growth inhibition around the discs were measured. Results: Excite, Single Bond and the bond of Clearfil SE Bond (SE) and Clearfil Protect Bond (CP) did not show any antibacterial activity. The strongest inhibitory activity was observed for the primers of CP and Prompt (PR) against S. mutans and the primers of SE and PB against L. casei. Conclusion: Light-activation significantly reduced or suppressed the antibacterial activity of the initially active uncured dentin bonding systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite resin is a dental material susceptible to color change over time which limits the longevity of restorations made with this material. The influence of light curing units and different fluoride mouthrinses on superficial morphology and color stability of a nanofilled composite resin was evaluated. Specimens (N = 150) were prepared and polished. The experimental groups were divided according to the type of light source (halogen and LED) and immersion media (artificial saliva, 0.05% sodium fluoride solution-manipulated, Fluordent Reach, Oral B, Fluorgard). Specimens remained in artificial saliva for 24-h baseline. For 60 days, they were immersed in solutions for 1 min. Color readout was taken at baseline and after 60 days of immersion. Surface morphology was analyzed by Scanning Electron Microscopy (SEM) after 60 days of immersion. Color change data were submitted to two-way Analysis of Variance and Tukey tests (α = 0.05). Surface morphology was qualitatively analyzed. The factor light source presented no significant variability (P = 0.281), the immersion media, significant variability (P < 0.001) and interaction between factors, no significant variability (P = 0.050). According to SEM observations, no difference was noted in the surface of the specimens polymerized by different light sources, irrespective of the immersion medium. It was concluded that the light source did not influence the color stability of composite, irrespective of the immersion media, and among the fluoride solutions analyzed, Fluorgard was the one that promoted the greatest color change, however, this was not clinically perceptible. The immersion media did not influence the morphology of the studied resin. Microsc. Res. Tech. 77:941–946, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The study evaluated the influence of light curing units and immersionmedia on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M)through the EDX analysis and SEM evaluation. Light curing units with different power densitiesand mode of application used were XL 3000 (480 mW/cm2), Jet Lite 4000 Plus (1230mW/cm2), andUltralume Led 5 (790 mW/cm2) and immersion media were artificial saliva, Coke1, tea and coffee,totaling 12 experimental groups. Specimens (10 mm 3 2 mm) were immersed in each respectivesolution for 5 min, three times a day, during 60 days and stored in artificial saliva at 378C 6 18Cbetween immersion periods. Topography and chemical analysis was qualitative. Findings: Groupsimmersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calciumat the material surface. Regarding coffee, there was a reasonable chemical degradation with loss ofload particles and deposition of ions. For tea, superficial degradation occurred in specific areaswith deposition of calcium, carbon, potassium and phosphorus. For Coke1, excessive matrix degra-dation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion:Light curing units did not influence the superficial morphology of composite resin tested, but theimmersion beverages did. Coke1affected material’s surface more than did the other tested drinks.Microsc. Res. Tech. 73:176–181, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV–Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV–Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 105 ± 1.90 105 cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV–VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to assess the influence of curing distance on the loss of irradiance and power density of four curing light devices. The behavior in terms of power density of four different dental curing devices was analyzed (Valo, Elipar 2, Radii-Cal, and Optilux-401) using three different distances of photopolymerization (0 mm, 4 mm, and 8 mm). All devices had their power density measured using a MARC simulator. Ten measurements were made per device at each distance. The total amount of energy delivered and the required curing time to achieve 16 J/cm2 of energy was also calculated. Data were statistically analyzed with one-way analysis of variance and Tukey’s tests (p < 0.05). The curing distance significantly interfered with the loss of power density for all curing light devices, with the farthest distance generating the lowest power density and consequently the longer time to achieve an energy density of 16 J/cm2 (p < 0.01). Comparison of devices showed that Valo, in extra power mode, showed the best results at all distances, followed by Valo in high power mode, Valo in standard mode, Elipar 2, Radii-Cal, and Optilux-401 halogen lamp (p < 0.01). These findings indicate that all curing lights induced a significant loss of irradiance and total energy when the light was emitted farther from the probe. The Valo device in extra power mode showed the highest power density and the shortest time to achieve an energy density of 16 J/cm2 at all curing distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)