914 resultados para ULTRA-LOW TEMPERATURE
Resumo:
Low temperature injury (LTI) of roses (Rosa hybrida L.) is difficult to assess by visual observation. Relative chlorophyll fluorescence (CF; F-v/F-m) is a non-invasive technique that provides an index of stress effects on photosystem 11 (PS 11) activity. This instrumental technique allows determination of the photosynthetic efficiency of plant tissues containing chloroplasts, such as rose leaves. In the present study, pre- and Post-Storage measurements of F-v/F-m were carried out to assess LTI in 'First Red' and 'Akito' roses harvested year round. Relationships between the pre-harvest environment conditions of temperature, relative humidity and photon flux density (PFD), F-v/F-m, and, vase life duration after storage are reported. After harvest, roses were stored at 1, 5 and 10 degrees C for 10 days. Non-stored roses were the control treatment. F-v/F-m ratios were reduced following storage, suggesting LTI of roses. However, reductions in F-v/F-m were not closely correlated with reduced vase life duration and were seasonally dependent. Only during winter experiments was F-v/F-m of roses stored at 1 degrees C significantly (P <= 0.001) lower compared to F-v/F-m of non-stored control roses and roses stored at 5 and 10 degrees C. Thus, the fall of F-v/F-m was due to an interaction of growing season and storage at 1 degrees C. Vase lives of roses grown during winter were significantly (P <= 0.001) shorter compared to roses grown during summer. Length of vase life was intermediate for roses grown during autumn and spring. Because of the lack of correlation between F-v/F-m and post-storage vase life it is concluded that the CF parameter F-v/F-m is nota practical index for assessing LTI in cold-stored roses. Higher PFD and temperature in summer were positively and significantly correlated with maintenance of post-storage FvIF ratios and longer vase life. It is suggested that shorter vase lives and lower post-storage F-v/F-m values after storage at 1 degrees C are consequences of reduced photosynthesis and smaller carbohydrate pools in winter-harvested roses. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
Increased grain yield in response to high rates of application of nitrogen (N) fertiliser is often limited by increased spikelet sterility, particularly under low temperature conditions in the New South Wales ( NSW) rice industry. In 3 field experiments, different N rates were applied for different sowing dates to investigate the interaction between N rate and temperature during microspore development on spikelet sterility and grain yield. In one experiment the effect of water depth on spikelet sterility was also investigated. Engorged pollen production, spikelet sterility, and yield and its components were recorded. Application of N affected a few different processes that lead into spikelet sterility. Application of N at both pre-flood (PF) and panicle initiation ( PI) significantly reduced the number of engorged pollen grains per anther, which was negatively correlated with spikelet sterility. Application of N and low temperature during microspore development with the absence of deep water also decreased pollen engorgement efficiency ( the percentage of pollen grains that were engorged). Application of N further increased spikelet density, which, in turn, increased both spikelet sterility and grain yield. The combined effect of spikelet density and low temperature during microspore development explained the 44% of variation in the number of engorged pollen grains per anther. Grain yield was decreased by low temperature during microspore development in the shallow water when N was applied. Spikelet sterility as a result of late sowing was strongly correlated with minimum temperature during flowering. It is concluded that N application reduced pollen number per anther as a result of increased spikelet density, and this made the spikelets more susceptible to low temperature, causing increased spikelet sterility.
Resumo:
The New Caledonia ophiolite hosts one of the largest obducted mantle section in the world, hence providing a unique insight for the study of upper mantle processes. These mantle rocks belong to an “atypical” ophiolitic sequence, which is dominated by refractory harzburgites but it also includes minor spinel and plagioclase lherzolites. Upper crust is notably absent in the ophiolite, with the exception of some mafic-ultramafic cumulates cropping out in the southern part of the island. Although the New Caledonia ophiolite has been under investigation for decades, its ultra-depleted nature has made its characterization an analytical challenge, so that few trace element data are available, while isotopic data are completely missing. In this thesis a comprehensive geochemical study (major, trace element and Sr-Nd-Pb isotopes) of the peridotites and the associated intrusive mafic rocks from the New Caledonia ophiolite has been carried out. The peridotites are low-strain tectonites showing porphyroclastic textures. Spinel lherzolites are undepleted lithotypes, as attested by the presence of 7-8 vol% of Na2O and Al2O3-rich clinopyroxene (up to 0.5 wt% Na2O; 6.5 wt% Al2O3), Fo content of olivine (88.5-90.0 mol%) and low Cr# of spinel (13-17). Conversely, harzburgites display a refractory nature, proven by the remarkable absence of primary clinopyroxene, very high Fo content in olivine (90.9-92.9 mol%), high Mg# in orthopyroxene (89.8-94.2) and Cr# in spinel (39-71). REE contents show abyssal-type patterns for spinel lherzolites, while harzburgites display U-shaped patterns, typical of fore-arc settings. Spinel lherzolites REE compositions are consistent with relatively low degree (8-9%) of fractional melting of a DMM source, starting in the garnet stability field. Conversely, REE models for harzburgites indicate high melting degrees (20-25%) of a DMM mantle source under spinel faies conditions, consistent with hydrous melting in forearc setting. Plagioclase lherzolites exhibit melt impregnation microtextures, Cr- and TiO2-enriched spinels and REE, Ti, Y, Zr progressive increase with respect to spinel lherzolites. Impregnation models indicate that plagioclase lherzolites may derive from spinel lherzolites by entrapment of highly depleted MORB melts in the shallow oceanic lithosphere. Mafic intrusives are olivine gabbronorites with a very refractory composition, as attested by high Fo content of olivine (87.3-88.9 mol.%), very high Mg# of clinopyroxene (87.7-92.2) and extreme anorthitic content of plagioclase (An = 90-96 mol%). The high Mg#, low TiO2 concentrations in pyroxenes and the anorthitic composition of plagioclase point out an origin from ultra-depleted primitive magmas in a convergent setting. Geochemical trace element models show that the parental melts of gabbronorites are primitive magmas with striking depleted compositions, bearing only in part similarities with the primitive boninitic melts of Bonin Islands. The first Sr, Nd and Pb isotope data obtained for the New Caledonia ophiolite highlight the presence of DM mantle source variably modified by different processes. Nd-Sr-Pb isotopic ratios for the lherzolites (+6.98≤epsilon Ndi≤+10.97) indicate a DM source that suffered low-temperature hydrothermal reactions. Harzburgites are characterized by a wide variation of Sr, Nd and Pb isotopic values, extending from DM-type to EM2 compositions (-0.82≤ epsilon Ndi≤+17.55), suggesting that harzburgite source was strongly affected by subduction-related processes. Conversely, combined trace element and Sr-Nd-Pb isotopic data for gabbronorites indicate a derivation from a source with composition similar to Indian-type mantle, but affected by fluid input in subduction environment. These geochemical features point out an evolution in a pre-Eocenic marginal basin setting, possibly in the proximity of a transform fault, for the lherzolites. Conversely, the harzburgites acquired their main geochemical and isotopic fingerprint in subduction zone setting.
Resumo:
We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate R=14, an RS critical transition point at pc 0.67 while the critical RSB transition point is located at pc 0.7450±0.0050, to be compared with the corresponding Shannon bound 1-R. For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed. © 2006 The American Physical Society.
Resumo:
In this work the oxidative degradation of pure polystyrene, polybutadiene and butadiene-modified polystyrene (normally called high impact polystyrene or HIPS) have been studied using a variety of physical and chemical techniques. The changes in dynamic-mechanical properties occurring during the ultra-violet light accelerated weathering of these polymers were followed by a visco-elastometric technique (Rheovibron) in the solid phase over a wide temperature range. Selective cross-linking of the polybutadiene in high-impact polystyrene caused the depression of the low temperature damping peak (tan d) with a corresponding sharp peak in tan d at ambient temperature accompanied by an integral rise in complex modulus. During the same period of photoxidation, the hydroperoxide concentration and gel content increased rapidly, reaching a maximum before decomposing photolytically with the destruction of unsaturation and with the formation of stable oxidation products. Infra-red spectroscopy showed the formation of carbonyl and hydroxyl groups. a,ß-unsaturated carbonyl was also identified and was formed by decomposition of both allylic hydroperoxide and initial peroxidic gel by ß-scission of the graft between polybutadiene and polystyrene. With further photoxidation a more stable ether gel was formed involving the destruction of the conjugating double bond of a,ß-unsaturated carbonyl. Addition of saturated and unsaturated ketones which are potential sensitisers of photoxidation to high-impact polystyrene and polybutadiene failed to photo-initiate the oxygen absorption of the polymers. A prior thermal oxidative treatment on the other hand eliminated the auto- accelerating stage leading to linear kinetics as the concentration of thermally-produced hydroperoxide approached a maximum. Antioxidants which act by destroying hydroperoxide lengthened the induction period to rapid oxygen absorption, whilst a phenolic antioxidant behaved as a weak photo-activator initially and a retarder later. Prior photolysis of high-impact polystyrene photo-activated the unsaturated component and caused similar changes in dynamic-mechanical properties to those found during photoxidation although at a much lower rate. Polybutadiene behaves as a photo-pro-oxidant for the destruction of polystyrene in high-impact polystyrene.
Resumo:
Ion implantation modifies the surface composition and properties of materials by bombardment with high energy ions. The low temperature of the process ensures the avoidance of distortion and degradation of the surface or bulk mechanical properties of components. In the present work nitrogen ion implantation at 90 keV and doses above 1017 ions/cm2 has been carried out on AISI M2, D2 and 420 steels and engineering coatings such as hard chromium, electroless Ni-P and a brush plated Co-W alloy. Evaluation of wear and frictional properties of these materials was performed with a lubricated Falex wear test at high loads up to 900 N and a dry pin-on-disc apparatus at loads up to 40 N. It was found that nitrogen implantation reduced the wear of AISI 420 stainless steel by a factor of 2.5 under high load lubricated conditions and by a factor of 5.5 in low load dry testing. Lower but significant reductions in wear were achieved for AISI M2 and D2 steels. Wear resistance of coating materials was improved by up to 4 times in lubricated wear of hard Cr coatings implanted at the optimum dose but lower improvements were obtained for the Co-W alloy coating. However, hardened electroless Ni-P coatings showed no enhancement in wear properties. The benefits obtained in wear behaviour for the above materials were generally accompanied by a significant decrease in the running-in friction. Nitrogen implantation hardened the surface of steels and Cr and Co-W coatings. An ultra-microhardness technique showed that the true hardness of implanted layers was greater than the values obtained by conventional micro-hardness methods, which often result in penetration below the implanted depth. Scanning electron microscopy revealed that implantation reduced the ploughing effect during wear and a change in wear mechanism from an abrasive-adhesive type to a mild oxidative mode was evident. Retention of nitrogen after implantation was studied by Nuclear Reaction Analysis and Auger Electron Spectroscopy. It was shown that maximum nitrogen retention occurs in hard Cr coatings and AISI 420 stainless steel, which explains the improvements obtained in wear resistance and hardness. X-ray photoelectron spectroscopy on these materials revealed that nitrogen is almost entirely bound to Cr, forming chromium nitrides. It was concluded that nitrogen implantation at 90 keV and doses above 3x1017 ions/cm2 produced the most significant improvements in mechanical properties in materials containing nitride formers by precipitation strengthening, improving the load bearing capacity of the surface and changing the wear mechanism from adhesive-abrasive to oxidative.
Resumo:
Biofuels and chemicals from biomass mean the gasification of biogenic feedstocks and the synthesis via methanol, dimethylester (DME) or Fischer-Tropsch products. To prevent the sensitive synthesis catalysts from poisoning the syngas must be free of tar and particulates. The trace concentrations of S-, C1-, N-species, alkali and heavy metals must be of the order of a few ppb. Moreover maximum conversion efficiency will be achieved performing the gas cleaning above the synthesis conditions. The concept of an innovative dry HTHP syngas cleaning is presented. Based on the HT particle filtration and suitable sorption and catalysis processes for the relevant contaminants a total concept will be derived, which leads to a syngas quality required for synthesis catalysts in only 2 combined stages. The experimental setup for the HT gas cleaning behind the 60 kWtherm entrained flow gasifier REGA of the institute is described. Results from HT filter experiments in pilot scale are presented. The performance of 2 natural minerals for HC1 and H2S sorption is discussed with respect to the parameters temperature, surface and residence time. Results from lab scale investigations on low temperature tar catalysts' performance (commercial and proprietary development) are discussed finally.
Resumo:
It is well accepted that the climate impact of large explosive volcanic eruptions results from reduction of solar radiation following atmospheric conversion of magmatic SO emissions into HSO aerosols. Thus, understanding the fate of SO in the eruption plume is crucial for better assessing volcanic forcing of climate. Here we focus on the potential of tephra to interact with and remove SO gas from the eruptive plume. Scavenging of SO by tephra is generally assumed to be driven by in-plume, low-temperature reactions between HSO condensates and tephra particles. However, the importance of SO gas-tephra interaction above the dew point temperature of HSO (190-200°C) has never been constrained. Here we report the results of an experimental study where silicate glasses with representative volcanic compositions were exposed to SO in the temperature range 25-800°C. We show that above 600°C, the uptake of SO on glass exhibits optimal efficiency and emplaces surficial CaSO deposits. This reaction is sustained via Ca diffusion from the bulk to the surface of the glass particles. At 800°C, the diffusion coefficient for Ca in the glasses was in the range 10-10cms. We suggest that high temperature SO scavenging by glass-rich tephra proceeds by the same Ca diffusion-driven mechanism. Using a simple mathematical model, we estimated SO scavenging efficiencies at 800°C varying from
Resumo:
PURPOSE. To assess systemic and ocular vascular reactivity in response to warm and cold provocation in untreated patients with primary open-angle glaucoma and normal control subjects. METHODS. Twenty-four patients with primary open-angle glaucoma and 22 normal control subjects were subjected to a modified cold pressor test involving immersion of the right hand in 40°C warm water followed by 4°C cold water exposure, and finger and ocular blood flow were assessed by means of peripheral laser Doppler flowmetry and retinal flowmetry, respectively. Finger and body temperature as well as intraocular pressure, systemic blood pressure, systemic pulse pressure, heart rate, and ocular perfusion pressure were also monitored. RESULTS. The patients with glaucoma demonstrated an increase in diastolic blood pressure (P = 0.023), heart rate (P = 0.010), and mean ocular perfusion pressure (P = 0.039) during immersion of the tested hand in 40°C water. During cold provocation, the patients demonstrated a significant decrease in finger (P = 0.0003) and ocular blood flow (the parameter velocity measured at the temporal neuroretinal rim area; P = 0.021). Normal subjects did not demonstrate any blood flow or finger temperature changes during immersion of the tested hand in 40°C water (P > 0.05); however, they exhibited increases in systolic blood pressure (P = 0.034) and pulse pressure (P = 0.0009) and a decrease in finger blood flow (P = 0.0001) during cold provocation. In normal subjects, the ocular blood flow was unchanged during high- and low-temperature challenge. CONCLUSIONS. Cold provocation elicits a different blood pressure, and ocular blood flow response in patients with primary open-angle glaucoma compared with control subjects. These findings suggest a systemic autonomic failure and ocular vascular dysregulation in POAG patients.
Resumo:
We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high-resolution numerical simulations, we examine the validity of simple estimates for the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately 75% of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipation
Resumo:
A two-phase three-dimensional computational model of an intermediate temperature (120--190°C) proton exchange membrane (PEM) fuel cell is presented. This represents the first attempt to model PEM fuel cells employing intermediate temperature membranes, in this case, phosphoric acid doped polybenzimidazole (PBI). To date, mathematical modeling of PEM fuel cells has been restricted to low temperature operation, especially to those employing Nafion ® membranes; while research on PBI as an intermediate temperature membrane has been solely at the experimental level. This work is an advancement in the state of the art of both these fields of research. With a growing trend toward higher temperature operation of PEM fuel cells, mathematical modeling of such systems is necessary to help hasten the development of the technology and highlight areas where research should be focused.^ This mathematical model accounted for all the major transport and polarization processes occurring inside the fuel cell, including the two phase phenomenon of gas dissolution in the polymer electrolyte. Results were presented for polarization performance, flux distributions, concentration variations in both the gaseous and aqueous phases, and temperature variations for various heat management strategies. The model predictions matched well with published experimental data, and were self-consistent.^ The major finding of this research was that, due to the transport limitations imposed by the use of phosphoric acid as a doping agent, namely low solubility and diffusivity of dissolved gases and anion adsorption onto catalyst sites, the catalyst utilization is very low (∼1--2%). Significant cost savings were predicted with the use of advanced catalyst deposition techniques that would greatly reduce the eventual thickness of the catalyst layer, and subsequently improve catalyst utilization. The model also predicted that an increase in power output in the order of 50% is expected if alternative doping agents to phosphoric acid can be found, which afford better transport properties of dissolved gases, reduced anion adsorption onto catalyst sites, and which maintain stability and conductive properties at elevated temperatures.^
Resumo:
The objective of this research is to develop nanoscale ultrasensitive transducers for detection of biological species at molecular level using carbon nanotubes as nanoelectrodes. Rapid detection of ultra low concentration or even single DNA molecules are essential for medical diagnosis and treatment, pharmaceutical applications, gene sequencing as well as forensic analysis. Here the use of functionalized single walled carbon nanotubes (SWNT) as nanoscale detection platform for rapid detection of single DNA molecules is demonstrated. The detection principle is based on obtaining electrical signal from a single amine terminated DNA molecule which is covalently bridged between two ends of an SWNT separated by a nanoscale gap. The synthesis, fabrication, chemical functionalization of nanoelectrodes and DNA attachment were optimized to perform reliable electrical characterization these molecules. Using this detection system fundamental study on charge transport in DNA molecule of both genomic and non genomic sequences is performed. We measured an electrical signal of about 30 pA through a hybridized DNA molecule of 80 base pair in length which encodes a portion of sequence of H5N1 gene of avian Influenza A virus. Due the dynamic nature of the DNA molecules the local environment such as ion concentration, pH and temperature significantly influence its physical properties. We observed a decrease in DNA conductance of about 33% in high vacuum conditions. The counterion variation was analyzed by changing the buffer from sodium acetate to tris(hydroxymethyl) aminomethane, which resulted in a two orders of magnitude increase in the conductivity of the DNA. The fabrication of large array of identical SWNT nanoelectrodes was achieved by using ultralong SWNTs. Using these nanoelectrode array we have investigated the sequence dependent charge transport in DNA. A systematic study performed on PolyG - PolyC sequence with varying number of intervening PolyA - PolyT pairs showed a decrease in electrical signal from 180 pA (PolyG - PolyC) to 30 pA with increasing number of the PolyA - PolyT pairs. This work also led to the development of ultrasensitive nanoelectrodes based on enzyme functionalized vertically aligned high density multiwalled CNTs for electrochemical detection of cholesterol. The nanoelectrodes exhibited selectively detection of cholesterol in the presence of common interferents found in human blood.
Resumo:
The cobalt-manganese ferrites (Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4) has a mixed structure of spinel type and it has been regarded as one of candidates for petitive wide variety of applications in devices from ultrasonic generation and detection, sensors, transformers, as well as in medical industry. Ferrites cobalt-manganese nanostructured were produced via mechanical alloying with subsequent heat treatment and were characterized by X-ray diffraction, X-ray fluorescence, scanning electron microscopy and magnetization. Samples of Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4 were obtained from the precursor powders Fe3O4, Co3O4 and Mn3O4 which were stoichiometrically mixed and ground by 10h and heat treated at 900°C for 2h. The diffraction confirmed the formation of the pure nanocrystalline phases to series Co1,2Fe1,8¡xMnxO4 with an average diameter of about 94nm. It was found that the lattice parameter increases with the substitution of Fe3Å by Mn3Å. The x-ray fluorescence revealed that the portions of metals in samples were close to the nominal stoichiometric compositions. The microstructural features observed in micrographs showed that the particles formed show very different morphology and particle size. The magnetic hysteresis measurements performed at low temperature showed that the saturation magnetization and remanence increased as the concentration of manganese, while the coercive field decreased. The anisotropy constant (Ke f ), was estimated from the data adjustments the law of approaching saturation. It was found that the anisotropy decreases substantially with the substitution of Fe by Mn.
Resumo:
The rainbow smelt (Osmerus mordax) is an anadromous teleost that produces type II antifreeze protein (AFP) and accumulates modest urea and high glycerol levels in plasma and tissues as adaptive cryoprotectant mechanisms in sub-zero temperatures. It is known that glyceroneogenesis occurs in liver via a branch in glycolysis and gluconeogenesis and is activated by low temperature; however, the precise mechanisms of glycerol synthesis and trafficking in smelt remain to be elucidated. The objective of this thesis was to provide further insight using functional genomic techniques [e.g. suppression subtractive hybridization (SSH) cDNA library construction, microarray analyses] and molecular analyses [e.g. cloning, quantitative reverse transcription - polymerase chain reaction (QPCR)]. Novel molecular mechanisms related to glyceroneogenesis were deciphered by comparing the transcript expression profiles of glycerol (cold temperature) and non-glycerol (warm temperature) accumulating hepatocytes (Chapter 2) and livers from intact smelt (Chapter 3). Briefly, glycerol synthesis can be initiated from both amino acids and carbohydrate; however carbohydrate appears to be the preferred source when it is readily available. In glycerol accumulating hepatocytes, levels of the hepatic glucose transporter (GLUT2) plummeted and transcript levels of a suite of genes (PEPCK, MDH2, AAT2, GDH and AQP9) associated with the mobilization of amino acids to fuel glycerol synthesis were all transiently higher. In contrast, in glycerol accumulating livers from intact smelt, glycerol synthesis was primarily fuelled by glycogen degradation with higher PGM and PFK (glycolysis) transcript levels. Whether initiated from amino acids or carbohydrate, there were common metabolic underpinnings. Increased PDK2 (an inhibitor of PDH) transcript levels would direct pyruvate derived from amino acids and / or DHAP derived from G6P to glycerol as opposed to oxidation via the citric acid cycle. Robust LIPL (triglyceride catabolism) transcript levels would provide free fatty acids that could be oxidized to fuel ATP synthesis. Increased cGPDH (glyceroneogenesis) transcript levels were not required for increased glycerol production, suggesting that regulation is more likely by post-translational modification. Finally, levels of a transcript potentially encoding glycerol-3-phosphatase, an enzyme not yet characterized in any vertebrate species, were transiently higher. These comparisons also led to the novel discoveries that increased G6Pase (glucose synthesis) and increased GS (glutamine synthesis) transcript levels were part of the low temperature response in smelt. Glucose may provide increased colligative protection against freezing; whereas glutamine could serve to store nitrogen released from amino acid catabolism in a non-toxic form and / or be used to synthesize urea via purine synthesis-uricolysis. Novel key aspects of cryoprotectant osmolyte (glycerol and urea) trafficking were elucidated by cloning and characterizing three aquaglyceroporin (GLP)-encoding genes from smelt at the gene and cDNA levels in Chapter 4. GLPs are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. The highlight was the discovery that AQP10ba transcript levels always increase in posterior kidney only at low temperature. This AQP10b gene paralogue may have evolved to aid in the reabsorption of urea from the proximal tubule. This research has contributed significantly to a general understanding of the cold adaptation response in smelt, and more specifically to the development of a working scenario for the mechanisms involved in glycerol synthesis and trafficking in this species.
Resumo:
Backscatter communication is an emerging wireless technology that recently has gained an increase in attention from both academic and industry circles. The key innovation of the technology is the ability of ultra-low power devices to utilize nearby existing radio signals to communicate. As there is no need to generate their own energetic radio signal, the devices can benefit from a simple design, are very inexpensive and are extremely energy efficient compared with traditional wireless communication. These benefits have made backscatter communication a desirable candidate for distributed wireless sensor network applications with energy constraints.
The backscatter channel presents a unique set of challenges. Unlike a conventional one-way communication (in which the information source is also the energy source), the backscatter channel experiences strong self-interference and spread Doppler clutter that mask the information-bearing (modulated) signal scattered from the device. Both of these sources of interference arise from the scattering of the transmitted signal off of objects, both stationary and moving, in the environment. Additionally, the measurement of the location of the backscatter device is negatively affected by both the clutter and the modulation of the signal return.
This work proposes a channel coding framework for the backscatter channel consisting of a bi-static transmitter/receiver pair and a quasi-cooperative transponder. It proposes to use run-length limited coding to mitigate the background self-interference and spread-Doppler clutter with only a small decrease in communication rate. The proposed method applies to both binary phase-shift keying (BPSK) and quadrature-amplitude modulation (QAM) scheme and provides an increase in rate by up to a factor of two compared with previous methods.
Additionally, this work analyzes the use of frequency modulation and bi-phase waveform coding for the transmitted (interrogating) waveform for high precision range estimation of the transponder location. Compared to previous methods, optimal lower range sidelobes are achieved. Moreover, since both the transmitted (interrogating) waveform coding and transponder communication coding result in instantaneous phase modulation of the signal, cross-interference between localization and communication tasks exists. Phase discriminating algorithm is proposed to make it possible to separate the waveform coding from the communication coding, upon reception, and achieve localization with increased signal energy by up to 3 dB compared with previous reported results.
The joint communication-localization framework also enables a low-complexity receiver design because the same radio is used both for localization and communication.
Simulations comparing the performance of different codes corroborate the theoretical results and offer possible trade-off between information rate and clutter mitigation as well as a trade-off between choice of waveform-channel coding pairs. Experimental results from a brass-board microwave system in an indoor environment are also presented and discussed.