834 resultados para UFG titanium
Resumo:
Anatase nanoparticles were obtained through a modified sol-gel route from titanium isopropoxide modified with acetic acid in order to control hydrolysis and condensation reactions. The modification of Ti(O(i)Pr)(4) with acetic acid reduces the availability of groups that hydrolyze and condense easily through the formation of a stable complex whose structure was determined to be Ti(OCOCH(3))(O(i)Pr)(2) by means of FTIR and (13)C NMR. The presence of this complex was confirmed with FTIR in the early stages of the process. A doublet in 1542 and 1440 cm(-1) stands for the asymmetric and symmetric stretching vibrations of the carboxylic group coordinated to Ti as a bidentate ligand. The gap of 102 cm(-1) between these signals suggests that acetate acts preferentially as a bidentate rather than as a bridging ligand between two titanium atoms. The use of acetic acid as modifier allows the control of both the degree of condensation and oligomerization of the precursor and leads to the preferential crystallization of TiO(2) in the anatase phase. A possible reaction pathway toward the formation of anatase is proposed on the basis of the intermediate species present in a 1:1 Ti(O(i)Pr)(4):CH(3)COOH molar system in which esterification reactions that introduce H(2)O into the reaction mixture were seen to be negligible. The Rietveld refinement and TEM analysis revealed that the powder is composed of isotropic anatase nanocrystallites.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: This in vitro study assessed the effect of an experimental 4%TiF4 varnish on enamel erosion.Methods: Sixty bovine enamel blocks were randomly allocated to each type of varnish:Duraphat((R)) -D (NaF, 2.26%F), Duofluorid((R))-F(NaF, 2.71% F), TiF4-T(2.45%F) and no-fluoride-P. After application of the varnishes, the blocks were subjected to six sequential pH cycles (cola drink for 10 min and artificial saliva for 50 min, each) per day, during 4 days. After the pH cycles, the blocks were maintained in artificial saliva for 18 h. Enamel alterations were determined in the 2nd and 4th days, using profilometry (wear) and microhardness (%SMHC) tests. Data were tested using ANOVA and Tukey's tests (p < 0.05).Results: the mean %SMHC (+/- S.D.) at the 2nd and 4th day was, respectively, D (-77.26 +/- 5.04(a) and -88.59 +/- 5.11(A)), F (-76.79 +/- 7.82(a) and -88.78 +/- 6.10(A)), T(-88.28 +/- 3.19(b) and -92.04 +/- 2.54(A,B)) and P (-87.96 +/- 2.23(b) and -94.15 +/- 1.14(B)). The mean wear (mu m +/- S.D.) at the 2nd and 4th day was, respectively, D (3.16 +/- 0.32(a) and 7.56 +/- 0.90(A)), F(3.35 +/- 0.78(a,b) and 7.92 +/- 0.98(A)), T (3.81 +/- 0.43(b) and 7.69 +/- 0.76(A)) and P (3.43 +/- 1.13(a,b) and 7.31 +/- 0.53(A)).Conclusions: the NaF varnishes reduced the softening, but had no effect on the reduction of the wear. The TiF4 varnish was not able to reduce the softening and wear. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Aim the aim of this study was to evaluate the efficacy of ultrasound in cleaning the surface of stainless steel and Ni-Ti endodontic instruments.Methodology Twenty nickel-titanium instruments (10 Quantec files and 10 Nitiflex) and 20 stainless steel K-files (10 Maillefer-Dentsply and 10 Moyco Union Broach) were removed from their original packages and evaluated using a scanning electron microscope. Scores were given for the presence of residues on the surface or the instruments. The instruments were then cleaned in an ultrasonic bath containing only distilled water or detergent solution for 15 min, and re-evaluated, using scanning electron microscopy.Results Before cleaning, a greater amount of metallic debris was observed on the nickel-titanium Quantec instruments (P < 0.05), when compared to those made of stainless steel. Statistical analysis showed that the use of ultrasound was effective for cleaning the instruments, regardless of the irrigating solution or the instruments type (P < 0.05).Conclusions the use of ultrasound proved to be an efficient method for the removal of metallic particles from the surface of stainless steel and Ni-Ti endodontic instruments.
Resumo:
Statement of problem. Titanium has physical and mechanical properties, which have led to its increased use in dental prostheses despite casting difficulties due to high melting point and formation of oxide layers which affect the metal-ceramic bond strength.Purpose. This in vitro study evaluated the shear bond strength of the interface of 2 dental porcelains and pure titanium injected into a mold at 3 different temperatures.Material and methods. Using commercially pure (cp) titanium bars (Titanium, Grade I) melted at 1668degreesC and cast at mold temperatures of 430degreesC, 700degreesC or 900degreesC, 60 specimens were machined to 4 x 4 mm, with a base of 5 x 1 mm. The 4-mm surfaces were airborne-particle abraded with 100 mum aluminum oxide before applying and firing the bonding agent and evaluating the 2 porcelains (Triceram/Triline ti and Vita Titankeramik). Ten specimens were prepared for each temperature and porcelain combination Shear bond testing was performed in a universal testing machine, with a 500-kg load cell and crosshead speed of 0.5 mm/min. The specimens were loaded until failure. The interfaces of representative fractured specimens of each temperature were examined with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Data for shear bond strength (MPa) were statistically analyzed by 2-way ANOVA and the Tukey test (alpha = .05).Results. The results showed significant differences for the metal/porcelain interaction effect (P = .0464). There were no significant differences for the 2 porcelains (P = .4250). The Tukey test showed a significant difference between the pair cp Ti 430degreesC Triceram and cp Ti 900degreesC Triceram, with respective mean values and SDs of 59.74 +/- 11.62 and 34.03 +/- 10.35 MPa.Conclusion. Triceram porcelain showed a bond strength decrease with an increase in the mold temperature for casting titanium. The highest bond strength for Vita porcelain and the best metal-ceramic interface observed with the SEM were found with the mold temperature of 700degreesC.
Resumo:
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.