943 resultados para Two dimensional pattern optical transfer
Resumo:
Protecting confidential information from improper disclosure is a fundamental security goal. While encryption and access control are important tools for ensuring confidentiality, they cannot prevent an authorized system from leaking confidential information to its publicly observable outputs, whether inadvertently or maliciously. Hence, secure information flow aims to provide end-to-end control of information flow. Unfortunately, the traditionally-adopted policy of noninterference, which forbids all improper leakage, is often too restrictive. Theories of quantitative information flow address this issue by quantifying the amount of confidential information leaked by a system, with the goal of showing that it is intuitively "small" enough to be tolerated. Given such a theory, it is crucial to develop automated techniques for calculating the leakage in a system. ^ This dissertation is concerned with program analysis for calculating the maximum leakage, or capacity, of confidential information in the context of deterministic systems and under three proposed entropy measures of information leakage: Shannon entropy leakage, min-entropy leakage, and g-leakage. In this context, it turns out that calculating the maximum leakage of a program reduces to counting the number of possible outputs that it can produce. ^ The new approach introduced in this dissertation is to determine two-bit patterns, the relationships among pairs of bits in the output; for instance we might determine that two bits must be unequal. By counting the number of solutions to the two-bit patterns, we obtain an upper bound on the number of possible outputs. Hence, the maximum leakage can be bounded. We first describe a straightforward computation of the two-bit patterns using an automated prover. We then show a more efficient implementation that uses an implication graph to represent the two- bit patterns. It efficiently constructs the graph through the use of an automated prover, random executions, STP counterexamples, and deductive closure. The effectiveness of our techniques, both in terms of efficiency and accuracy, is shown through a number of case studies found in recent literature. ^
Resumo:
We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature dependency of the scaling fields is identified as the major obstacle that has impeded a complete analysis. Once temperature is relinquished in favor of the correlation length as the basic variable, we obtain a reliable estimation of the anomalous dimension and of the thermal critical exponent. Universality among binary and Gaussian couplings is confirmed to a high numerical accuracy.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The purpose of this article is to classify the real hypersurfaces in complex space forms of dimension 2 that are both Levi-flat and minimal. The main results are as follows: When the curvature of the complex space form is nonzero, there is a 1-parameter family of such hypersurfaces. Specifically, for each one-parameter subgroup of the isometry group of the complex space form, there is an essentially unique example that is invariant under this one-parameter subgroup. On the other hand, when the curvature of the space form is zero, i.e., when the space form is complex 2-space with its standard flat metric, there is an additional `exceptional' example that has no continuous symmetries but is invariant under a lattice of translations. Up to isometry and homothety, this is the unique example with no continuous symmetries.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Gate-tunable two-dimensional (2D) materials-based quantum capacitors (QCs) and van der Waals heterostructures involve tuning transport or optoelectronic characteristics by the field effect. Recent studies have attributed the observed gate-tunable characteristics to the change of the Fermi level in the first 2D layer adjacent to the dielectrics, whereas the penetration of the field effect through the one-molecule-thick material is often ignored or oversimplified. Here, we present a multiscale theoretical approach that combines first-principles electronic structure calculations and the Poisson–Boltzmann equation methods to model penetration of the field effect through graphene in a metal–oxide–graphene–semiconductor (MOGS) QC, including quantifying the degree of “transparency” for graphene two-dimensional electron gas (2DEG) to an electric displacement field. We find that the space charge density in the semiconductor layer can be modulated by gating in a nonlinear manner, forming an accumulation or inversion layer at the semiconductor/graphene interface. The degree of transparency is determined by the combined effect of graphene quantum capacitance and the semiconductor capacitance, which allows us to predict the ranking for a variety of monolayer 2D materials according to their transparency to an electric displacement field as follows: graphene > silicene > germanene > WS2 > WTe2 > WSe2 > MoS2 > phosphorene > MoSe2 > MoTe2, when the majority carrier is electron. Our findings reveal a general picture of operation modes and design rules for the 2D-materials-based QCs.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
In this paper we establish, from extensive numerical experiments, that the two dimensional stochastic fire-diffuse-fire model belongs to the directed percolation universality class. This model is an idealized model of intracellular calcium release that retains the both the discrete nature of calcium stores and the stochastic nature of release. It is formed from an array of noisy threshold elements that are coupled only by a diffusing signal. The model supports spontaneous release events that can merge to form spreading circular and spiral waves of activity. The critical level of noise required for the system to exhibit a non-equilibrium phase-transition between propagating and non-propagating waves is obtained by an examination of the \textit{local slope} $\delta(t)$ of the survival probability, $\Pi(t) \propto \exp(- \delta(t))$, for a wave to propagate for a time $t$.
Resumo:
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Resumo:
A systematic diagrammatic expansion for Gutzwiller wavefunctions (DE-GWFs) proposed very recently is used for the description of the superconducting (SC) ground state in the two-dimensional square-lattice t-J model with the hopping electron amplitudes t (and t') between nearest (and next-nearest) neighbors. For the example of the SC state analysis we provide a detailed comparison of the method's results with those of other approaches. Namely, (i) the truncated DE-GWF method reproduces the variational Monte Carlo (VMC) results and (ii) in the lowest (zeroth) order of the expansion the method can reproduce the analytical results of the standard Gutzwiller approximation (GA), as well as of the recently proposed 'grand-canonical Gutzwiller approximation' (called either GCGA or SGA). We obtain important features of the SC state. First, the SC gap at the Fermi surface resembles a d(x2-y2) wave only for optimally and overdoped systems, being diminished in the antinodal regions for the underdoped case in a qualitative agreement with experiment. Corrections to the gap structure are shown to arise from the longer range of the real-space pairing. Second, the nodal Fermi velocity is almost constant as a function of doping and agrees semi-quantitatively with experimental results. Third, we compare the
Resumo:
In a high mobility two-dimensional electron gas (2DEG) realized in a GaAs/Al0.3Ga0.7As quantum well we observe changes in the Shubnikov-de Haas oscillations (SdHO) and in the Hall resistance for different sample geometries. We observe for each sample geometry a strong negative magnetoresistance around zero magnetic field which consists of a peak around zero magnetic field and of a huge magnetoresistance at larger fields. The peak around zero magnetic field is left unchanged for different geometries.
Resumo:
In this paper we consider instabilities of localised solutions in planar neural field firing rate models of Wilson-Cowan or Amari type. Importantly we show that angular perturbations can destabilise spatially localised solutions. For a scalar model with Heaviside firing rate function we calculate symmetric one-bump and ring solutions explicitly and use an Evans function approach to predict the point of instability and the shapes of the dominant growing modes. Our predictions are shown to be in excellent agreement with direct numerical simulations. Moreover, beyond the instability our simulations demonstrate the emergence of multi-bump and labyrinthine patterns. With the addition of spike-frequency adaptation, numerical simulations of the resulting vector model show that it is possible for structures without rotational symmetry, and in particular multi-bumps, to undergo an instability to a rotating wave. We use a general argument, valid for smooth firing rate functions, to establish the conditions necessary to generate such a rotational instability. Numerical continuation of the rotating wave is used to quantify the emergent angular velocity as a bifurcation parameter is varied. Wave stability is found via the numerical evaluation of an associated eigenvalue problem.
Resumo:
The aims of this thesis were evaluation the type of wave channel, wave current, and effect of some parameters on them and identification and comparison between types of wave maker in laboratory situations. In this study, designing and making of two dimension channels (flume) and wave maker for experiment son the marine buoy, marine building and energy conversion systems were also investigated. In current research, the physical relation between pump and pumpage and the designing of current making in flume were evaluated. The related calculation for steel building, channels beside glasses and also equations of wave maker plate movement, power of motor and absorb wave(co astal slope) were calculated. In continue of this study, the servo motor was designed and applied for moving of wave maker’s plate. One Ball Screw Leaner was used for having better movement mechanisms of equipment and convert of the around movement to linear movement. The Programmable Logic Controller (PLC) was also used for control of wave maker system. The studies were explained type of ocean energies and energy conversion systems. In another part of this research, the systems of energy resistance in special way of Oscillating Water Column (OWC) were explained and one sample model was designed and applied in hydrolic channel at the Sheikh Bahaii building in Azad University, Science and Research Branch. The dimensions of designed flume was considered at 16 1.98 0. 57 m which had ability to provide regular waves as well as irregular waves with little changing on the control system. The ability of making waves was evaluated in our designed channel and the results were showed that all of the calculation in designed flume was correct. The mean of error between our results and theory calculation was conducted 7%, which was showed the well result in this situation. With evaluating of designed OWC model and considering of changes in the some part of system, one bigger sample of this model can be used for designing the energy conversion system model. The obtained results showed that the best form for chamber in exit position of system, were zero degree (0) in angle for moving below part, forty and five (45) degree in front wall of system and the moving forward of front wall keep in two times of height of wave.
Resumo:
International audience
Resumo:
We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg–Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter–Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.