991 resultados para Turbulent Boundary Layer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of air–sea coupling in the simulation of the Madden–Julian oscillation (MJO) is explored using two configurations of the Hadley Centre atmospheric model (AGCM), GA3.0, which differ only in F, a parameter controlling convective entrainment and detrainment. Increasing F considerably improves deficient MJO-like variability in the Indian and Pacific Oceans, but variability in and propagation through the Maritime Continent remains weak. By coupling GA3.0 in the tropical Indo-Pacific to a boundary-layer ocean model, KPP, and employing climatological temperature corrections, well resolved air–sea interactions are simulated with limited alterations to the mean state. At default F, when GA3.0 has a poor MJO, coupling produces a stronger MJO with some eastward propagation, although both aspects remain deficient. These results agree with previous sensitivity studies using AGCMs with poor variability. At higher F, coupling does not affect MJO amplitude but enhances propagation through the Maritime Continent, resulting in an MJO that resembles observations. A sensitivity experiment with coupling in only the Indian Ocean reverses these improvements, suggesting coupling in the Maritime Continent and West Pacific is critical for propagation. We hypothesise that for AGCMs with a poor MJO, coupling provides a “crutch” to artificially augment MJO-like activity through high-frequency SST anomalies. In related experiments, we employ the KPP framework to analyse the impact of air–sea interactions in the fully coupled GA3.0, which at default F shows a similar MJO to uncoupled GA3.0. This is due to compensating effects: an improvement from coupling and a degradation from mean-state errors. Future studies on the role of coupling should carefully separate these effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze immediately offshore. On the day of the case study, the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. Although a colder SST would also imply a larger land–sea temperature contrast and hence a stronger onshore wind – an effect which alone would discourage blocking – the increased static stability exerts a dominant control over whether blocking takes place. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper for the first time discuss the wind pressure distribution on the building surface immersed in wind profile of low-level jet rather than a logarithmic boundary-layer profile. Two types of building models are considered, low-rise and high-rise building, relative to the low-level jet height. CFD simulation is carried out. The simulation results show that the wind pressure distribution immersed in a low-jet wine profile is very different from the typical uniform and boundary-layer flow. For the low-rise building, the stagnation point is located at the upper level of windward façade for the low-level jet wind case, and the separation zone above the roof top is not as obvious as the uniform case. For the high-rise building model, the height of stagnation point is almost as high as the low-level jet height.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations) to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ClearfLo project provides integrated measurements of the meteorology, composition and particulate loading of London's urban atmosphere to improve predictive capability for air quality. Air quality and heat are strong health drivers and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants such as ozone, nitrogen dioxide, and fine and coarse particulate matter in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the ClearfLo project's interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures. Within ClearfLo (www.clearflo.ac.uk), a large multi-institutional project funded by the UK Natural Environment Research Council (NERC), integrated measurements of meteorology, gaseous and particulate composition/loading within London's atmosphere were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and elevated), and at urban background, kerbside and rural locations were complemented with high-resolution numerical atmospheric simulations . Combining these (measurement/modeling) enhances understanding of seasonal variations in meteorology and composition together with the controlling processes. Two intensive observation periods (winter 2012 and summer Olympics 2012) focus upon the vertical structure and evolution of the urban boundary layer, chemical controls on nitrogen dioxide and ozone production, in particular the role of volatile organic compounds, and processes controlling the evolution, size, distribution and composition of particulate matter. The paper shows that mixing heights are deeper over London than in the rural surroundings and the seasonality of the urban boundary layer evolution controls when concentrations peak. The composition also reflects the seasonality of sources such as domestic burning and biogenic emissions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Airborne measurements within the urban mixing layer (360 m) over Greater London are used to quantify CO2 emissions at the meso-scale. Daytime CO2 fluxes, calculated by the Integrative Mass Boundary Layer (IMBL) method, ranged from 46 to 104 μmol CO2 m−2 s−1 for four days in October 2011. The day-to-day variability of IMBL fluxes is at the same order of magnitude as for surface eddy-covariance fluxes observed in central London. Compared to fluxes derived from emissions inventory, the IMBL method gives both lower (by −37%) and higher (by 19%) estimates. The sources of uncertainty of applying the IMBL method in urban areas are discussed and guidance for future studies is given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coastal outflow describes the horizontal advection of pollutants from the continental boundary layer across a coastline into a layer above the marine boundary layer. This process can ventilate polluted continental boundary layers and thus regulate air quality in highly populated coastal regions. This paper investigates the factors controlling coastal outflow and quantifies its importance as a ventilation mechanism. Tracers in the Met Office Unified Model (MetUM) are used to examine the magnitude and variability of coastal outflow over the eastern United States for a 4 week period during summer 2004. Over the 4 week period, ventilation of tracer from the continental boundary layer via coastal outflow occurs with the same magnitude as vertical ventilation via convection and advection. The relative importance of tracer decay rate, cross-coastal advection rate, and a parameter based on the relative continental and marine boundary layer heights, on coastal outflow is assessed by reducing the problem to a time-dependent box-model. The ratio of the advection rate and decay rate is a dimensionless parameter which determines whether tracers are long-lived or short-lived. Long- and short-lived tracers exhibit different behaviours with respect to coastal outflow. For short-lived tracers, increasing the advection rate increases the diurnally averaged magnitude of coastal outflow, but has the opposite effect for very long-lived tracers. Short-lived tracers exhibit large diurnal variability in coastal outflow but long-lived tracers do not. By combining the MetUM and box-model simulations a landwidth is determined which represents the distance inland over which emissions contribute significantly to coastal outflow. A landwidth of between 100 and 400 km is found to be representative for a tracer with a lifetime of 24 h.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average −63%) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent launch of the equatorial spacecraft of the Double Star mission, TC-1, has provided an unprecedented opportunity to monitor the southern hemisphere dayside magnetopause boundary layer in conjunction with northern hemisphere observations by the quartet of Cluster spacecraft. We present first results of one such situation where, on 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawnside magnetosphere. The observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1, which appear to lie north and south of the reconnection line, respectively. In fact, the observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, with Cluster observing northward moving FTEs with +/− polarity, whereas TC-1 sees −/+ polarity FTEs. This assertion is further supported by the application of a model designed to track flux tube motion for the prevailing interplanetary conditions. The results from this model show, in addition, that the low-latitude FTE dynamics are sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model suggests that TC-1 should miss the resulting FTEs more often than Cluster and this is borne out by the observations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Polar spacecraft had a prolonged encounter with the high-latitude dayside magnetopause on May 29, 1996. This encounter with the magnetopause occurred when the interplanetary magnetic field was directed northward. From the three-dimensional electron and ion distribution functions measured by the Hydra instrument, it has been possible to identify nearly all of the distinct boundary layer regions associated with high-latitude reconnection. The regions that have been identified are (1) the cusp; (2) the magnetopause current layer; (3) magnetosheath field lines that have interconnected in only the Northern Hemisphere; (4) magnetosheath field lines that have interconnected in only the Southern Hemisphere; (5) magnetosheath field lines that have interconnected in both the Northern and Southern Hemispheres; (6) magnetosheath that is disconnected from the terrestrial magnetic field; and (7) high-latitude plasma sheet field lines that are participating in magnetosheath reconnection. Reconnection over this time period was occurring at high latitudes over a broad local-time extent, interconnecting the magnetosheath and lobe and/or plasma sheet field lines in both the Northern and Southern Hemispheres. Newly closed boundary layer field lines were observed as reconnection occur-red first at high latitudes in one hemisphere and then later in the other. These observations establish the location of magnetopause reconnection during these northward interplanetary magnetic field conditions as being at high latitudes, poleward of the cusp, and further reinforce the general interpretation of electron and ion phase space density signatures as indicators of magnetic reconnection and boundary layer formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distinction between plasma properties in different dayside regions in the Earth's magnetosphere is of strong interest as it is often indicative of specific physical processes. This is certainly true for the distinction between low latitude boundary layer (LLBL) and cusp plasma, which has been attributed to the effects of plasma diffusion across the magnetopause (LLBL) versus more direct entry of magnetosheath plasma(cusp). It is also the case, however, that quite different plasma regions can result more simply from a common source plasma, and from different stages of temporal evolution of the plasma associated with magnetospheric convection. In this paper, we show that, for southward interplanetary magnetic field (IMF) conditions, the distinction between the cusp and cleft/LLBL at low altitudes may result from;the single process of magnetosheath plasma entry into the magnetosphere on reconnected field lines. The different plasma characteristics of the two regions result from the properties of the source magnetosheath ion distribution and the effects of magnetic reconnection. Using well known properties of the magnetosheath, several predictions concerning the cusp and cleft/ LLBL precipitation are readily derived.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ground-based observations of dayside auroral forms and magnetic perturbations in the arctic sectors of Svalbard and Greenland, in combination with the high-resolution measurements of ionospheric ion drift and temperature by the EISCAT radar, are used to study temporal/spatial structures of cusp-type auroral forms in relation to convection. Large-scale patterns of equivalent convection in the dayside polar ionosphere are derived from the magnetic observations in Greenland and Svalbard. This information is used to estimate the ionospheric convection pattern in the vicinity of the cusp/cleft aurora. The reported observations, covering the period 0700-1130 UT, on January 11, 1993, are separated into four intervals according to the observed characteristics of the aurora and ionospheric convection. The morphology and intensity of the aurora are very different in quiet and disturbed intervals. A latitudinally narrow zone of intense and dynamical 630.0 nm emission equatorward of 75 degrees MLAT, was observed during periods of enhanced antisunward convection in the cusp region. This (type 1 cusp aurora) is considered to be the signature of plasma entry via magnetopause reconnection at low magnetopause latitudes, i.e. the low-latitude boundary layer (LLB I,). Another zone of weak 630.0 nm emission (type 2 cusp aurora) was observed to extend up to high latitudes (similar to 79 degrees MLAT) during relatively quiet magnetic conditions, when indications of reverse (sunward) convection was observed in the dayside polar cap. This is postulated to be a signature of merging between a northward directed IMF (B-z > 0) and the geomagnetic field poleward of the cusp. The coexistence of type 1 and 2 auroras was observed under intermediate circumstances. The optical observations from Svalbard and Greenland were also used to determine the temporal and spatial evolution of type 1 auroral forms, i.e. poleward-moving auroral events occurring in the vicinity of a rotational convection reversal in the early post-noon sector. Each event appeared as a local brightening at the equatorward boundary of the pre-existing type 1 cusp aurora, followed by poleward and eastward expansions of luminosity. The auroral events were associated with poleward-moving surges of enhanced ionospheric convection and F-layer ion temperature as observed by the EISCAT radar in Tromso. The EISCAT ion flow data in combination with the auroral observations show strong evidence for plasma flow across the open/closed field line boundary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a detailed investigation of a magnetospheric flux transfer event (FTE) seen by the Active Magnetospheric Tracer Explorer (AMPTE) UKS and IRM satellites around 1046 UT on October 28, 1984. This event has been discussed many times previously in the literature and has been cited as support for a variety of theories of FTE formation. We make use of a model developed to reproduce ion precipitations seen in the cusp ionosphere. The analysis confirms that the FTE is well explained as a brief excursion into an open low-latitude boundary layer (LLBL), as predicted by two theories of magnetospheric FTEs: namely, that they are bulges in the open LLBL due to reconnection rate enhancements or that they are indentations of the magnetopause by magnetosheath pressure increases (but in the presence of ongoing steady reconnection). The indentation of the inner edge of the open LLBL that these two models seek to explain is found to be shallow for this event. The ion model reproduces the continuous evolution of the ion distribution function between the sheath-like population at the event center and the surrounding magnetospheric populations; it also provides an explanation of the high-pressure core of the event as comprising field lines that were reconnected considerably earlier than those that are draped over it to give the event boundary layer. The magnetopause transition parameter is used to isolate a field rotation on the boundaries of the core, which is subjected to the tangential stress balance test. The test identifies this to be a convecting structure, which is neither a rotational discontinuity (RD) nor a contact discontinuity, but could possibly be a slow shock. In addition, evidence for ion reflection off a weak RD on the magnetospheric side of this structure is found. The event structure is consistent in many ways with features predicted for the open LLBL by analytic MHD theories and by MHD and hybrid simulations. The de Hoffman-Teller velocity of the structure is significantly different from that of the magnetosheath flow, indicating that it is not an indentation caused by a high-pressure pulse in the sheath but is consistent with the motion of newly opened field lines (different from the sheath flow because of the magnetic tension force) deduced from the best fit to the ion data. However, we cannot here rule out the possibility that the sheath flow pattern has changed in the long interval between the two satellites observing the FTE and subsequently emerging into the magnetosheath; thus this test is not conclusive in this particular case. Analysis of the fitted elapsed time since reconnection shows that the core of the event was reconnected in one pulse and the event boundary layer was reconnected in a subsequent pulse. Between these two pulses is a period of very low (but nonzero) reconnection rate, which lasts about 14 mins. Thus the analysis supports, but does not definitively verify, the concept that the FTE is a partial passage into an open LLBL caused by a traveling bulge in that layer produced by a pulse in reconnection rate.