960 resultados para Tunnel à vent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional computer modelling techniques are being used to develop a probabilistic model of turbulence-related spray transport around various plant architectures to investigate the influence of plant architectures and crop geometry on the sprayapplication process. Plant architecture models that utilise a set of growth rules expressed in the Lindenmayer systems (L-systems) formalism have been developed and programmed using L-studio software. Modules have been added to simulate the movement ofdroplets through the air and deposition on the plant canopy. Deposition of spray on an artificial plant structure was measured in the wind tunnel at the University of Queensland, Gatton campus and the results compared to the model simulation. Further trials are planned to measure the deposition of spray droplets on various crop and weed species and the results from these trials will be used to refine and validate the combined spray and plant architecture model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A force balance system for measuring lift, thrust and pitching moment has been used to measure the performance of fueled scramjet-powered vehicle in the T4 Shock Tunnel at The University of Queensland. Detailed measurements have been made of the effects of different fuel flow rates corresponding to equivalence ratios between 0.0 and 1.5. For proposed scramjet-powered vehicles, the fore-body of the vehicle acts as part of the inlet to the engine and the aft-body acts as the thrust surface for the engine. This type of engine-integrated design leads to a strong coupling between the performance of the engine and the lift and trim characteristics of the vehicle. The measurements show that the lift force increased by approximately 50% and centre-of-pressure changed by approximately 10% of the chord of the vehicle when the equivalence ratio varied from 0.0 to 1.0. The results demonstrate the importance of engine performance to the overall aerodynamic characteristics of engine-integrated scramjet vehicles and that such characteristics can be measured in a shock tunnel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersal of soredia from individual soralia of the lichen Hypogymnia physodes (L.) Nyl. was studied using a simple wind tunnel constructed in the field. Individual lobes with terminal soralia were placed in the wind tunnel on the adhesive surface of dust particle collectors. Air currents produced by a fan were directed over the surface of the lobes. The majority of soredia were deposited within 5 cm of the source soralium but some soredia were dispersed to at least 80 cm at a wind speed of 6 m s-1. Variation in wind speed had no statistically significant effect on the total number of soredial clusters deposited averaged over soralia but the mean size of cluster and the distance dispersed were greater at higher wind speeds. The number of soredia deposited was dependent on the orientation of the soralium to the air currents. More soredia were deposited with the soralium facing the fan at a wind speed of 9 m s-1. Moisture in the form of a fine mist reduced substantially the number of soredia deposited at a wind speed of 6 m s-1 but had no effect on the mean number of soredia per cluster or on the mean distance dispersed. The data suggest: (1) that wind dispersal from an individual soralium is influenced by wind speed, the location of the soralium on the thallus and the level of moisture and (2) that air currents directed over the surfaces of thalli located on the upper branches of trees would effectively disperse soredia of H. physodes vertically and horizontally within a tree canopy. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the first demonstration of multiplexed fibre Bragg grating strain sensors in a multicore fibre for shape measurement and their application to structural monitoring. Sets of gratings, acting as strain gauges, are co-located in the multicore fibre such that they enable the curvature to be determined via differential strain measurement. Multiple sets of these gratings allow the curvature to be measured at several points along the fibre. In this paper, the multicore fibre is configured to measure the deflection of a simple mechanical beam arising from the displacement of concrete tunnel sections. Laboratory tests are presented in which the system was demonstrated capable of displacement measurement with a resolution of ±0.1 mm over a range of several millimetres. © 2006 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the remediation of burial grounds at the US Department of Energy's (DOE's) Hanford Site in Washington State, the dispersion of contaminated soil particles and dust is an issue that is faced by site workers on a daily basis. This contamination problem is even more of a concern when one takes into account the semi-arid characteristics of the region where the site is located. To mitigate this problem, workers at the site use a variety of engineered methods to minimize the dispersion of contaminated soil and dust (i.e. use of water and/or suppression agents that stabilizes the soil prior to soil excavation, segregation, and removal activities). A primary contributor to the dispersion of contaminated soil and dust is wind soil erosion. The erosion process occurs when the wind speed exceeds a certain threshold value which depends on a number of factors including wind force loading, particle size, surface soil moisture, and the geometry of the soil. Thus under these circumstances, the mobility of contaminated soil and generation and dispersion of particulate matter are significantly influenced by these parameters. This dependence of soil and dust movement on threshold shear velocity, fixative dilution and/or application rates, soil moisture content, and soil geometry were studied for Hanford's sandy soil through a series of wind tunnel experiments, laboratory experiments and theoretical analysis. In addition, the behavior of plutonium (Pu) powder contamination in the soil was studied by introducing a Pu simulant (cerium oxide). The results showed that soil dispersion and PM10 concentrations decreased with increasing soil moisture. Also, it was shown that the mobility of the soil was affected by increasing wind velocity. It was demonstrated that the use of fixative products greatly decreased the amount of soil and PM10 concentrations when exposed to varying wind conditions. In addition, it was shown that geometry of the soil sample affected the velocity profile and calculation of roughness surface coefficient when comparing round and flat soil samples. Finally, threshold shear velocities were calculated for soil with flat surface and their dependency on surface soil moisture was demonstrated. A theoretical framework was developed to explain these dependencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30–40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30–40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.