910 resultados para Tumor growth
Resumo:
The study of colon cancer has taken advantage of the development of a model in animals in which tumors in the colon are easily induced by chemical treatment. When 1,2-dimethylhydrazine (DMH) is injected into rats tumor growth is observed in colon in preference to other tissues. This observation led us to investigate the Cytochrome P450 system in colon and its participation in the particular “colon sensitivity” to DMH. It has been established that the Cytochrome P450 system participates in the metabolism of DMH and the methyl carbonium product of Cytochrome P450 activation of DMH is responsible for DNA damage which is considered an initial step to carcinogenesis. The Cytochrome P450 system is a reasonable place to search for an explanation of this organotropic effect of DMH and we feel that the knowledge obtained from this study can take us closer to understanding the development of colonic malignancy. In our study we used a human colon cell line (LS174T) treated with DMH. The Cytochrome P450 system in the cells was manipulated with inducers of different isoforms of Cytochrome P450. The effect of DMH on colon cells was measured by determination of O-6-methylguanine which is a DNA adduct derived from the metabolism of this chemical and is associated with development of tumors. Our results support the hypothesis that Cytochrome P450 plays an important role in the damage to cellular DNA by DMH. This damage is increased after induction of Cytochromes P450 1A1 and 2E1. The effect of inhibition of the methyltransferase and glutathione systems on protection against DMH damage in colon demonstrated the importance of the protective role of the former and the lack of effective protection of the latter system. ^
Resumo:
Interferons (IFNs) have been shown to exert antiviral, cell growth regulatory, and immunomodulatory effects on target cells. Both type I (α and β) and type II (γ) IFNs regulate cellular activities by specifically inducing the expression or activation of endogenous proteins that perform distinct biological functions. p202 is a 52 kDa nuclear phosphoprotein known to be induced by IFNs. p202 interacts with a variety of cellular transcription and growth regulatory factors and affects their functions. ^ In this report, we showed that the expression of p202 was associated with an anti-proliferative effect on human prostate cancer cells. Cells that expressed p202 showed reduced ability to grow in soft-agar, indicating a loss of transformation phenotype. More importantly, p202 expression reduced the tumorigenicity of human prostate cancer cells. p202-expressing cells exhibit an elevated level of hypophosphorylated form of pRb, and reduced level of cyclin B1 and p55CDC. ^ Our data suggest that p202 is a growth inhibitor gene in prostate cancer cells and its expression may also suppress transformation phenotype and tumorigenicity of prostate cancer cells. ^ In addition to inhibiting in vitro cell growth, suppressing the tumorigenicity of breast cancer cells in vivo, p202 expression could sensitize breast cancer cells to apoptosis induced by TNF-α treatment. One possible mechanism contributing to this sensitization is the inactivation of NF-κB by its interaction with p202. These results provide a scientific basis for a novel therapeutic strategy that combines p202 and TNF-α treatment against breast cancer. ^ It has been reported that NF-κB is constitutively active in human pancreatic cancer cells. Since p202 interacts with NF-κB and inhibits its activity, we examined a potential p202-mediated anti-tumor activity in pancreatic cancer. We used both ectopic and orthotopic xenograft models and demonstrated that p202 expression is associated with multiple anti-tumor activities that include inhibition of tumor growth, reduced tumorigenicity, prolonged survival, and remarkably, suppression of metastasis and angiogenesis. In vitro invasion assay also showed that p202-expressing pancreatic cancer cells are less invasive than those without p202 expression. That observation was supported by the findings that p202-expressing tumors showed reduced expression of angiogenic factors such as IL-8, and VEGF by inhibiting their transcription, and p202-expressing pancreatic cancer cells have reduced level of MAP-2 activity, a secreted protease activity important for metastasis. Together, our results strongly suggest that p202 expression mediates multiple anti-tumor activities against pancreatic cancer, and that may provide a scientific basis for developing a p202-based gene therapy in pancreatic cancer treatment. ^ Importantly, we demonstrated a treatment efficacy by using p202/SN2 liposome complex in a nude mice orthotopic breast cancer, and an ectopic pancreatic cancer xenograft model, through systemic and intra-tumor injection respectively. These results suggest a feasibility of using p202/SN2 liposome in future pre-clinical gene therapy experiments. ^
Resumo:
The purpose of this study was to characterize epidermal hyperplasia overlying malignant melanoma, to determine the mitogenic factor responsible for the induction of this hyperplasia and to investigate its biological consequence. Whether increased keratinocyte proliferation overlying melanoma is due to production of growth factors by the tumor cells or to other mechanisms is unknown. Epidermal hyperplasia overlying human melanoma was found overlying thick (>4.0mm), but not thin (<1.0mm) tumors. Immunostaining of the sections for growth factors related to angiogenesis revealed that epidermal hyperplasia was associated with loss of IFN-β production by the keratinocytes directly overlying the tumors. Since previous studies from our laboratory have demonstrated that exogenous administration of IFN-β negatively regulates angiogenesis, we hypothesize that tumors are able to produce growth factors which stimulate the proliferation of cells in the surrounding tissues. This hyperplasia leads to a decrease in the endogenous negative regulator of angiogenesis, IFN-β. ^ The human melanoma cell line, DM-4 and several of its clones were studied to identify the mitogenic factor for keratinocytes. The expression of TGF-α directly correlated with epidermal hyperplasia in the DM-4 clones. A375SM, a human melanoma cell line that produces high levels of TGF-α, was transfected with a plasmid encoding full-length antisense TGF-α. The parental and transfected cells were implanted intradermally into nude mice. The extent of epidermal hyperplasia directly correlated with expression of TGF-α and decreased production of IFN-β, hence, increased angiogenesis. ^ In the next set of experiments, we determined the role of IFN-β on angiogenesis, tumor growth and metastasis of skin tumors. Transgenic mice containing a functional mutation in the receptor for IFN α/β were obtained. A375SM melanoma cells were implanted both s.c. and i.v. into IFN α/βR −/− mice. Tumors in the IFN α/β R −/− mice exhibited increased angiogenesis and metastasis. IFN α/βR −/− mice were exposed to chronic UV irradiation. Autochthonous tumors developed earlier in the transgenic mice than the wild-type mice. ^ Collectively, the data show that TGF-α produced by tumor cells induces proliferation of keratinocytes, leading to epidermal hyperplasia overlying malignant melanoma associated with loss of IFN-β and enhanced angiogenesis, tumorigenicity and metastasis. ^
Resumo:
Activator protein 2α (AP-2) is a transcription factor known to play a crucial role in the progression of malignant melanoma, colorectal carcinoma, and breast cancer. Several AP-2 target genes are known to be deregulated in prostate cancer, therefore, we hypothesize that loss AP-2 expression plays a causal role in prostate carcinogenesis. Immunofluorescent staining for AP-2 of 30 radical prostatectomy specimens demonstrated that while AP-2 was highly expressed in normal prostate epithelium, its expression was lost in most cases of high grade prostatic intraepithelial neoplasia (PIN), and all cases of prostate cancer studied. Additional analyses demonstrated that AP-2 was associated with normal luminal differentiation and it was not expressed in the basal cell layer. In cell lines, AP-2 was strongly expressed in immortalized normal prostate epithelial cells, whereas low expression was observed in the LNCaP, LNCaP-LN3, and PC3M-LN4 prostate cancer cell lines. Transfection of the highly tumorigenic and metastatic cell line PC3M-LN4 with the AP-2 gene significantly decreased tumor growth in the prostate of nude mice (p = 0.032) and inhibited metastases to the lymph nodes. Moreover, transfection of the low tumorigenic, low metastatic cell line LNCaP-LN3 with full length AP-2; resulted in complete inhibition of tumor incidence in the AP-2 transfectants (0/19) vs. neo control (10/16). A potential mechanism for this loss of tumorigenicity was the modulation of gene expression in prostate cancer cells that mimicked the normal phenotype. Analysis of differential expression between neo control- and AP-2-transfected cells in vitro and in tumors demonstrated low VEGF expression in AP-2 transfectants. We further demonstrated that AP-2 acted as a transcriptional repressor of the VEGF promoter by binding to a GC-rich region located between −88 and −66. This region contains an AP-2 consensus element overlapping two Sp1 consensus elements. We found that Sp3 and AP-2 bound to this region in a mutually exclusive manner to promote activation or repression. Increased VEGF expression has been observed in high grade PIN and in prostate cancer. Here we provide evidence that this early molecular change could be a result of loss of AP-2 expression in the prostatic epithelium. ^
Resumo:
Polyomavirus enhancer activator 3 (PEA3) is a member of the Ets family of transcription factors. We demonstrated in a previous study that, through down-regulating the HER-2/neu oncogene at the transcriptional level, PEA3 can inhibit the growth and tumor development of HER-2/neu-overexpressing ovarian cancer cells. Here, we established stable clones of the human breast cancer cell line MDA-MB-361DYT2 that express PEA3 under the control of a tetracycline-inducible promoter. The expression of PEA3 in this cell line inhibited cell growth and resulted in cell cycle delay in the G1 phase independently of the HER-2/neu down-regulation. In an orthotopic breast cancer model, we showed that expression of PEA3 inhibited tumor growth and prolonged the survival of tumor-bearing mice. In a parallel experiment in another breast cancer cell line, BT474M1, we were unable to obtain stable PEA3-inducible transfectants, which suggests that PEA3 possessed a strong growth inhibitory effect in this cell line. Indeed, PEA3 coupled with the liposome SN2 demonstrated therapeutic effects in mice bearing tumors induced by BT474M1. These results provide evidence that the PEA3 gene could function as an antitumor and gene therapy agent for human breast cancers. ^
Resumo:
Metastasis, the major cause of morbidity and mortality in most cancers, is a highly organized and organ-selective process. The receptor tyrosine kinase HER2 enhances tumor metastasis, however, its role in homing to metastatic organs is poorly understood. The chemokine receptor CXCR4 has recently been shown to mediate the malignant cancer cells to specific organs. Here we show that HER2 enhances the expression of CXCR4 by increasing CXCR4 protein synthesis and inhibiting its degradation. We also observed significant correlation between HER2 and CXCR4 expression in human breast tumor tissues, and an association between CXCR4 expression and a poor overall survival rate in patients with breast cancer. Furthermore, we found that CXCR4 is required for HER2-induced invasion, migration, and adhesion activities in vitro . Finally we established stable transfectants using retroviral RNA interference to inhibit CXCR4 expression and showed that the CXCR4 is required for HER2-mediated lung metastasis in vivo. These results provide a plausible mechanism for HER2-mediated breast tumor metastasis and homing to metastatic organs, and establish a functional link between the receptor tyrosine kinase HER2 and the chemokine receptor CXCR4 signaling pathways. ^ The HER2 overexpression activates PI-3K/Akt pathways and plays an important role in mediating cell survival and tumor development. Hypoxia inducible factors (HIF) are the key regulator for angiogenesis and energy metabolism, and thereby enhance tumor growth and metastasis. HIF activation occurs in the majority of human cancers, including the HER2 overexpressing cancer cells. Previous reports suggested that increased PI-3K/Akt may activate HIF pathway in various tumors, but the detail mechanism is still not completely understood. Here we found that HER2/PI-3K/Akt pathway induces HIF-1α activation, which is independent of hypoxia, but relatively weaker than hypoxic stimulation. This phenomenon was further observed in Akt knock out mouse embryonic fibroblast cells. The PI-3K/Akt pathway does not affect HIF-1α binding with its E3 ligase VHL, but enhances the binding affinity between HIF-1α and β unit. Furthermore, we found Akt phosphorylates HIF-1β at serine 271 and further regulated HIF transcriptional activity. Our findings provided one mechanism that HER2 induce HIF activation via Akt to promote angiogenesis, and this process is independent on hypoxia, which may have implications in the oncogenic activity of HER2 and PI-3K/Akt pathway. ^
Resumo:
Breast cancer is the most common cancer among women with approximately 180,000 new cases being diagnosed yearly in the United States (1). HER2/neu gene amplification and subsequent protein overexpression is found in 20–30% of breast cancer patients and can lead to the promotion of various metastasis-related properties (2–4) and/or resistance to cancer therapies such as chemotherapy and radiation (5). ^ The protein product of the HER2/neu gene, p185, is a proven target for immunological therapy. Recently, passive immunotherapy with the monoclonal antibody Trastuzumab® has validated an immunological approach to HER2/neu+ breast cancer. Immunity to HER2/ neu, when found in breast cancer patients, is of low magnitude. Vaccination-induced HER2/neu-specific antibodies and HER2/neu-specific cytotoxic T cells could result in long-lived immunity with therapeutic benefit. Many features of DNA vaccines and attenuated viral vectors may contribute to the efficacy of prime-boost vaccination. In particular, vaccines capable of eliciting strong cell-mediated immunity are thought to hold the greatest promise for control of cancer (6–9). ^ To optimize cellular immunization to HER2/neu in my study, the HER2/neu gene was presented to the immune system using a priming vector followed by a second vector used as the boost. In both animals and humans, priming with DNA and boosting with a poxviruses, vaccinia or canarypox appears to be particularly promising for induction of a broad immune responses (10). ^ I tested three gene vaccines encoding the HER2/neu gene: (1) a plasmid, SINCP, that contains part of the genome of Sindbis virus; (2) Viral Replicon Particles (VRP) of Venezuela Equine Encephalitis virus (VEE) and (3) E1/E2a-deleted human Type 5 Adenovirus. In SINCP and the VRP, the caspid and envelope genes of the virus were deleted and replaced with the gene for HER2/neu. SINCP-neu, VRP- neu and Adeno-neu when used alone were effective vaccines protecting healthy mice from challenge with a breast cancer cell line injected in the mammary fat pad or injected i.v. to induce experimental lung metastasis. However, SINCP-neu, VRP-neu or Adeno-neu when used alone were not able to prolong survival of mice in therapeutic models in which vaccination occurred after injection of a breast cancer cell line. ^ When the vaccines were combined in a mixed regimen of a SINCP- neu prime VRP-neu or Adeno-neu boost, there was a significant difference in tumor growth and survival in the therapeutic vaccine models. In vitro assays demonstrated that vaccination with each of the three vaccines induced IgG specific for p185, the gene product of HER2/neu, induced p185-specific T lymphocytes, as measured by tetramer analysis. Vaccination also induced intracellular INF-γ and a positive ELISPOT assay. These findings indicate that SINCP-neu, VRP-neu and Adeno-neu, used alone or in combination, may have clinical potential as adjuvant immunotherapy for the treatment of HER2/neu-expressing tumors. ^
Resumo:
Bladder cancer is the fifth most common cancer with more than 50,000 cases diagnosed each year. Interferon-α (IFNα) is mostly used in combination with BCG for the treatment of transitional cell carcinoma (TCC). To examine the effects of IFNα on bladder cancer cells, I analyzed a panel of 20 bladder cancer cell lines in terms of their sensitivity to IFNα-induced apoptosis and the underlying mechanisms. I identified three categories: cells that die after 48hr, after 72h, and cells resistant even after 72hr of IFNα treatment. Examination of the IFN-signal transduction pathway revealed that the defect was not due to abrogation of IFN signaling. Further analysis demonstrated dependency of IFN-induced apoptosis on caspase-8, implicating the role of death receptors in IFN-induced cell death. Of the six most-IFN-sensitive cell lines, the majority upregulated Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) at the mRNA and protein level and IFN-induced cell death was mediated through TRAIL, while a minority of the most IFN-sensitive cells undergo apoptosis through a TNFα-dependent mechanism. IFNα resistance was due to either absence of TRAIL upregulation at the mRNA or protein level, resistance to exogenous rhTRAIL itself or lack of sensitization to IFN-induced cell death. Downregulation of XIAP, or XIAP inactivation through its regulator NFκB has been reported to sensitize tumor cells to death receptor-induced cell death. Baseline and IFN-inducible XIAP levels were examined in the most and least IFN-sensitive cells, knocking down XIAP and the p65 subunit of NFκB enhanced IFN-induced cell death, implicating XIAP downregulation as a mechanism through which bladder cancer cells are sensitized to IFN-induced apoptosis. To determine whether or not the proteasome inhibitor Bortezomib (BZ) sensitizes bladder cancer cells to IFN-induced cell death, the combined effects of IFN+BZ and the underlying molecular mechanisms were examined both in vitro and in vivo using two bladder xenograft models. In both models, tumor growth inhibition was the result of either increased cell death of tumor cells exerted by the two agents and/or inhibition of angiogenesis. In vitro, MAP downregulation in response to the combined treatment of IFN+BZ accounts for one of the mechanisms mediating IFN+BZ cell death in bladder cancer cells. ^
Resumo:
Osteosarcoma, a malignant bone tumor, rapidly destroys the cortical bone. We demonstrated that mouse K7M2 osteosarcoma cells were deficient in osterix (osx), a zinc finger-containing transcription factor required for osteoblasts differentiation and bone formation. These cells formed lytic tumors when injected into the tibia. The destruction of bone is mediated by osteoclasts in osteosarcoma. The less expression of osterix with osteolytic phenotype was also observed in more tumor cell lines. Replacement of osterix in K7M2 cells suppressed lytic bone destruction, inhibited tumor growth in vitro and in vivo, and suppressed lung metastasis in vivo and the migration of K7M2 to lung conditioned medium in vitro. By contrast, inhibiting osterix by vector-based small interfering RNA (siRNA) in two cell lines (Dunn and DLM8) that expressed high levels of osterix converted osteoblastic phenotype to lytic. Recognizing and binding of Receptor Activator of NF-κB (RANK) on osteoclast precursors by its ligand RANKL is the key osteoclastogenic event. Increased RANKL results in more osteoclast activity. We investigated whether K7M2-mediated bone destruction was secondary to an effect on RANKL. The conditioned medium from K7M2 could upregulate RANKL in normal osteoblast MC3T3, which might lead to more osteoclast formation. By contrast, the conditioned medium from K7M2 cells transfected with osx-expressing plasmid did not upregulate RANKL. Furthermore, Interleukin-1alpha (IL-1α) was significantly suppressed following osx transfection. IL-1α increased RANKL expression in MC3T3 cells, suggesting that osx may control RANKL via a mechanism involving IL-1α. Using a luciferase reporter assay, we demonstrated that osx downregulated IL-1α through a transcription-mediated mechanism. Following suppression of osterix in Dunn and DLM8 cells led to enhanced IL-1α promoter activity and protein production. Site-directed mutagenesis and Chromatin immunoprecipitation (ChIP) indicated that osterix downregulated IL-1α through a Sp1-binding site on the IL-1α promoter. These data suggest that osterix is involved in the lytic phenotype of osteosarcoma and that this is mediated via transcriptional repression of IL-1α. ^
Resumo:
Interactions between neoplastic cells and the host stroma play a role in both tumor cell migration and proliferation. Stromal cells provide structural support for malignant cells, modulate the tumor microenvironment, and influence phenotypic behavior as well as the aggressiveness of the malignancy. In response, the tumor provides growth factors, cytokines, and cellular signals that continually initiate new stromal reactions and recruit new cells into the microenvironment to further support tumor growth. Since growing tumors recruit local cells, as well as supplemental cells from the circulation, such as fibroblasts and endothelial precursors, the question arises if it would be possible to access circulating stromal cells to modify the tumor microenvironment for therapeutic benefits. One such cell type, mesenchymal stem cells (MSC), could theoretically be engrafted into stroma. MSC are pluripotent cells that have been shown to form stromal elements such as myofibroblasts, perivascular tissues and connective tissues. Several reports have demonstrated that MSC can incorporate into sites of wound healing and tissue repair, due to active tissue remodeling and local paracrine factors, and given the similarity between wound healing and the carcinoma induced stromal response one can hypothesize that MSC have the potential to be recruited to sites of tumor development. In addition, gene-modified MSC could be used as cellular vehicles to deliver gene products into tumors. My results indicate that MSC home to and participate in tumor stroma formation in ovarian tumor xenografts in mice. Additionally, once homed to tumor beds, MSC proliferate rapidly and integrate. My studies aim at understanding the fate of MSC in the tumor microenvironment, as well as utilizing them for cellular delivery of therapeutic genes into the stroma of ovarian carcinomas. ^
Resumo:
Colorectal cancer is the forth most common diagnosed cancer in the United States. Every year about a hundred forty-seven thousand people will be diagnosed with colorectal cancer and fifty-six thousand people lose their lives due to this disease. Most of the hereditary nonpolyposis colorectal cancer (HNPCC) and 12% of the sporadic colorectal cancer show microsatellite instability. Colorectal cancer is a multistep progressive disease. It starts from a mutation in a normal colorectal cell and grows into a clone of cells that further accumulates mutations and finally develops into a malignant tumor. In terms of molecular evolution, the process of colorectal tumor progression represents the acquisition of sequential mutations. ^ Clinical studies use biomarkers such as microsatellite or single nucleotide polymorphisms (SNPs) to study mutation frequencies in colorectal cancer. Microsatellite data obtained from single genome equivalent PCR or small pool PCR can be used to infer tumor progression. Since tumor progression is similar to population evolution, we used an approach known as coalescent, which is well established in population genetics, to analyze this type of data. Coalescent theory has been known to infer the sample's evolutionary path through the analysis of microsatellite data. ^ The simulation results indicate that the constant population size pattern and the rapid tumor growth pattern have different genetic polymorphic patterns. The simulation results were compared with experimental data collected from HNPCC patients. The preliminary result shows the mutation rate in 6 HNPCC patients range from 0.001 to 0.01. The patients' polymorphic patterns are similar to the constant population size pattern which implies the tumor progression is through multilineage persistence instead of clonal sequential evolution. The results should be further verified using a larger dataset. ^
Resumo:
The Jun activation domain-binding protein (JAB1) is a c-Jun co-activator and a member of the COP9 signalosome. Additionally, it has recently been named a key negative regulator of the cyclin-dependent kinase inhibitor, p27. JAB1 overexpression has been observed in breast cancer and correlates with low p27 levels as well as poor prognosis, yet the mechanism of JAB1 deregulation is unknown. Data from our laboratory suggest that constitutive transcriptional activation of the jab1 gene is responsible for JAB1 protein overexpression. Therefore, we hypothesized that overexpression of JAB1 in breast cancer can be attributed to increased transcriptional activity. To identify potential positive regulators of JAB1, we characterized the promoter and found a 128 bp region that was critical for jab1 transcriptional activation. Our studies show that two oncogenic transcription factors, C/EBPβ and STAT3, play an important role in modulating jab1 transcription. Further, we have identified jab1 as a direct target gene of the SRC/STAT3 pathway. These studies provide insight to the mechanism of JAB1 overexpression in breast cancer and open up possibilities for therapies to inhibit its expression. ^ The development of the humanized monoclonal antibody, Herceptin (trastuzumab) targeting the HER2 (ErbB2) receptor has provided promising treatment to patients with aggressive HER2 positive breast cancer. However, many patients are resistant to Herceptin and additional therapies are needed to overcome resistance. Recent findings indicate that one mechanism of resistance involves AKT phosphorylation and subsequent mislocalization of the cyclin dependent kinase inhibitor, p27. We examined whether JAB1 facilitated degradation of p27 may be another mechanism of resistance to Herceptin. Our studies show that overexpression of JAB1 inhibited Herceptin induced G1-arrest and p27 accumulation. Interestingly, increased JAB1 levels were observed in two BT-474 Herceptin resistant clones. Targeted silencing of JAB1 increased p27 protein levels, reinstated a G1 checkpoint, and reduced cellular proliferation in the resistant clones. Our studies have demonstrated that inhibition of JAB1 sensitizes Herceptin resistant cells to treatment. Therefore, inhibition of JAB1 could provide a novel method of sensitizing resistant tumors to Herceptin-induced tumor growth arrest. ^
Resumo:
The mammalian Forkhead Box (Fox) transcription factor (FoxM1) is implicated in tumorgenesis. However, the role and regulation of FoxM1 in gastric cancer remain unknown.^ I examined FoxM1 expression in 86 cases of primary gastric cancer and 57 normal gastric tissue specimens. I found weak expression of FoxM1 protein in normal gastric mucosa, whereas I observed strong staining for FoxM1 in tumor-cell nuclei in various gastric tumors and lymph node metastases. The aberrant FoxM1 expression is associated with VEGF expression and increased angiogenesis in human gastric cancer. A Cox proportional hazards model revealed that FoxM1 expression was an independent prognostic factor in multivariate analysis. Furthermore, overexpression of FoxM1 by gene transfer significantly promoted the growth and metastasis of gastric cancer cells in orthotopic mouse models, whereas knockdown of FoxM1 expression by small interfering RNA did the opposite. Next, I observed that alteration of tumor growth and metastasis by elevated FoxM1 expression was directly correlated with alteration of VEGF expression and angiogenesis. In addition, promotion of gastric tumorigenesis by FoxM1 directly and significantly correlated with transactivation of vascular endothelial growth factor (VEGF) expression and elevation of angiogenesis. ^ To further investigate the underlying mechanisms that result in FoxM1 overexpression in gastric cancer, I investigated FoxM1 and Krüppel-like factor 4 (KLF4) expressions in primary gastric cancer and normal gastric tissue specimens. Concomitance of increased expression of FoxM1 protein and decreased expression of KLF4 protein was evident in human gastric cancer. Enforced KLF4 expression suppressed FoxM1 protein expression. Moreover, a region within the proximal FoxM1 promoter was identified to have KLF4-binding sites. Finally, I found an increased FoxM1 expression in gastric mucosa of villin-Cre -directed tissue specific Klf4-null mice.^ In summary, I offered both clinical and mechanistic evidence that dysregulated expression of FoxM1 play an important role in gastric cancer development and progression, while KLF4 mediates negative regulation of FoxM1 expression and its loss significantly contributes to FoxM1 dysregulation. ^
Resumo:
Ovarian cancer is the leading cause of cancer-related death for females due to lack of specific early detection method. It is of great interest to find molecular-based biomarkers which are sensitive and specific to ovarian cancer for early diagnosis, prognosis and therapeutics. miRNAs have been proposed to be potential biomarkers that could be used in cancer prevention and therapeutics. The current study analyzed the miRNA and mRNA expression data extracted from the Cancer Genome Atlas (TCGA) database. Using simple linear regression and multiple regression models, we found 71 miRNA-mRNA pairs which were negatively associated between 56 miRNAs and 24 genes of PI3K/AKT pathway. Among these miRNA and mRNA target pairs, 9 of them were in agreement with the predictions from the most commonly used target prediction programs including miRGen, miRDB, miRTarbase and miR2Disease. These shared miRNA-mRNA pairs were considered to be the most potential genes that were involved in ovarian cancer. Furthermore, 4 of the 9 target genes encode cell cycle or apoptosis related proteins including Cyclin D1, p21, FOXO1 and Bcl2, suggesting that their regulator miRNAs including miR-16, miR-96 and miR-21 most likely played important roles in promoting tumor growth through dysregulated cell cycle or apoptosis. miR-96 was also found to directly target IRS-1. In addition, the results showed that miR-17 and miR-9 may be involved in ovarian cancer through targeting JAK1. This study might provide evidence for using miRNA or miRNA profile as biomarker.^
Resumo:
Metformin has antiproliferative effects through the activation of AMPK and has gained interest as an antineoplastic agent in several cancer types, although studies in endometrial cancer (EC) are limited. The aims of this project were to evaluate pathways targeted by metformin in EC, investigate mechanisms by which metformin exerts its antiproliferative effects, and explore rational combination therapies with other targeted agents. Three EC cell lines were used to evaluate metformin’s effect on cell proliferation, PI3K and Ras-MAPK signaling, and apoptosis. A xenograft mouse model was also used to evaluate the effects of metformin treatment on in vivo tumor growth. These preliminary studies demonstrated that K-Ras mutant cell lines exhibited a decreased proliferative rate, reduced tumor growth, and increased apoptosis in response to metformin compared to K-Ras wild-type cells. To test the hypothesis that mutant K-Ras may predict response to metformin, murine EC cells with loss of PTEN and expressing mutant K-RasG12D were transfected to re-express PTEN or have K-Ras silenced using siRNA. While PTEN expression did not alter response to metformin, cells in which K-Ras was silenced displayed reduced sensitivity to metformin. Mislocalization of K-Ras to the cytoplasm is associated with decreased signaling and induction of apoptosis. Metformin’s effect on K-Ras localization was analyzed by confocal microscopy in cells expressing oncogenic GFP-K-RasG12V. Metformin demonstrated concentration-dependent mislocalization of K-Ras to the cytoplasm. Mislocalization of K-Ras to the cytoplasm was confirmed in K-Ras mutant EC cells (Hec1A) by cell fractionation in response to metformin 1 and 5 mM (p=0.008 and p=0.004). This effect appears to be AMPK-independent as combined treatment with Compound C, an AMPK inhibitor, did not alter K-Ras localization. Furthermore, treatment of EC cells with metformin in combination with PI3K inhibitors resulted in a significant decrease in proliferation than either agent or metformin alone. While metformin exerts antineoplastic effects by activation of AMPK and decreased PI3K signaling, our data suggest that metformin may also disrupt localization of K-Ras and hence its signaling in an AMPK-independent manner. This has important implications in defining patients who may benefit from metformin in combination with other targeted agents, such as mTOR inhibitors.