954 resultados para Transcriptional Regulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rhizobia are important soil bacteria due to their ability to establish nitrogen-fixing symbioses with legume plants. In this dual lifestyle, as free-living bacteria or as plant symbiont, rhizobia are often exposed to different environmental stresses. The present chapter overviews the current knowledge on the heat shock response of rhizobia, highlighting how these large genome bacteria respond to heat from a transcriptional point of view. Response to heat shock in rhizobia involves genome wide changes in the transcriptome that may affect more than 30% of the genome and involve all replicons. In addition to the expected upregulation of genes already known to be involved in stress response (dnaK, groEL, ibpA, clpB), the reports on the heat shock response in rhizobia also showed particular aspects of stress response in these resourceful bacteria. The transcriptional response to heat in rhizobia includes the overexpression of a large number of genes involved in transcription and carbohydrate transport and metabolism. Additional studies are needed in order to better understand the transcriptional regulation of stress response in bacteria with large genomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Helicobacter pylori is one of the most widespread and successful human pathogens, colonizing half of the population stomach mucosa and causing gastric malignancies in 1% of carriers. Due to the increasing number of antimicrobial-resistant strains, in 2017 the WHO included H. pylori among pathogens that pose a major threat for humankind. In this study, we propose as a molecular target for novel antimicrobial strategies HP1043, an orphan response regulator essential for the viability of H. pylori as it orchestrates all the most important cellular processes. Amino acids most relevant for HP1043 dimerization and target DNA recognition were identified and used to guide an in-silico protein-DNA docking and generate a high-resolution structural model of the interacting HP1043 dimer and its target DNA. The model was experimentally validated and exploited to carry out a virtual screening of small molecule libraries, identifying 8 compounds potentially able to interfere with HP1043 function and likely block H. pylori infection. A second line of research aimed at the characterization of the regulatory function of HP1043 and the tight mechanisms of regulation of hp1043 gene expression. In particular, we proved a direct interaction between HP1043 and the housekeeping sigma80 factor of the RNA polymerase. A conditional mutant H. pylori strain overexpressing a synthetic copy of the hp1043 gene altered in nucleotide sequence yet encoding the wild-type protein was generated, achieving increased intracellular levels of HP1043. However, overexpression of HP1043 did not result in an upregulation of target genes transcription nor modulation of hp1043 transcript levels, pinpointing the existence of multiple overlayed mechanisms of regulation that affect both protein levels and functionality as well as maintain steady the amount of hp1043 transcript. Finally, we proposed that a mechanism of post-transcriptional regulation could depend on an antisense transcript to the hp1043 gene which was validated in two different strains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bivalvia represents an ancient taxon including around 25,000 living species that have adapted to a wide range of environmental conditions, and show a great diversity in body size, shell shapes, and anatomic structure. Bivalves are characterized by highly variable genome sizes and extremely high levels of heterozygosity, which obstacle complete and accurate genome assemblies and hinder further genomic studies. Moreover, some bivalve species presented a stable evolutionary exception to the strictly maternal inheritance of mitochondria, namely doubly uniparental inheritance (DUI), making these species a precious model to study mitochondrial biology. During my PhD, I focused on a DUI species, the Manila clam Ruditapes philippinarum, and my work was two-folded. First, taking advantage of a newly assembled draft genome and a large RNA-seq dataset from different tissues of both sexes, I investigated 1) the role of gene expression and alternative splicing in tissue differentiation; 2) the relationship across tissue specificity, regulatory network connectivity, and sequence evolution; 3) sexual contrasting genetic markers potentially associated with sexual differentiation. The detailed information for this part is in Chapter 2. Second, using the same RNA-seq data, I investigated how nuclear oxidative phosphorylation (OXPHOS) genes coordinate with two divergent mitochondrial genomes in DUI species (mito-nuclear coordination and coevolution). To address this question, I compared transcription, polymorphism, and synonymous codon usage in the mitochondrial and nuclear OXPHOS genes of R. philippinarum in Chapter 3. To my knowledge, this thesis represents the first study exploring the role of alternative splicing in tissue differentiation, and the first study analyzing both transcriptional regulation and sequence evolution to investigate the coordination of OXPHOS genes in bivalves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Metazoa, the germline represents the cell lineage devoted to transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in the development of a new organism and in the evolution of the species. Germline establishment is tightly tied to animal multicellularity itself, in which the complex differentiation of cell lineages is favoured by the confinement of totipotency in specific cell populations. In the present thesis, I addressed the subject of germline characterization in animals through different approaches, in an attempt to cover different sides and scales. First, I investigated the extent and nature of shared differentially transcribed molecular factors in 10 different species germline-related lineages. I observed that newly evolved genes are less likely to be involved in germline-related mechanisms and that the mostly shared transcriptional signal across the species considered was the upregulation of genes associated to proper DNA replication, instead of the expected transcriptional and post-transcriptional regulation, that apparently have a higher level of lineage-specificity. I then focused on the evolutionary history of Tudor domain containing proteins, a gene family that underwent germline-associated expansions in animals. Using data from 24 holozoan phyla, I could confirm the previously proposed evolution of the Tudor domain secondary structure. Also, I associated lineage-specific family reductions and expansions to peculiar genomic dynamics and to the evolution of germline-associated piRNA pathway of retrotransposon silencing. Lastly, I characterized and investigated the expression of the Tudor protein TDRD7 in the clam Ruditapes philippinarum. Through immunolocalization, I could compare its expression profiles in gametogenic specimens to the previously characterized germline marker vasa. Combining results with literature, I proposed that, in this species, TDRD7 is involved in the assembly of germ granules, i.e. cytoplasmic structures associated to germline differentiation in virtually all animals, but whose assemblers can be taxon specific.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Little is known about the role of the transcription factor peroxisome proliferator-activated receptor (PPAR) beta/delta in liver. Here we set out to better elucidate the function of PPARbeta/delta in liver by comparing the effect of PPARalpha and PPARbeta/delta deletion using whole genome transcriptional profiling and analysis of plasma and liver metabolites. In fed state, the number of genes altered by PPARalpha and PPARbeta/delta deletion was similar, whereas in fasted state the effect of PPARalpha deletion was much more pronounced, consistent with the pattern of gene expression of PPARalpha and PPARbeta/delta. Minor overlap was found between PPARalpha- and PPARbeta/delta-dependent gene regulation in liver. Pathways upregulated by PPARbeta/delta deletion were connected to innate immunity and inflammation. Pathways downregulated by PPARbeta/delta deletion included lipoprotein metabolism and various pathways related to glucose utilization, which correlated with elevated plasma glucose and triglycerides and reduced plasma cholesterol in PPARbeta/delta-/- mice. Downregulated genes that may underlie these metabolic alterations included Pklr, Fbp1, Apoa4, Vldlr, Lipg, and Pcsk9, which may represent novel PPARbeta/delta target genes. In contrast to PPARalpha-/- mice, no changes in plasma free fatty acid, plasma beta-hydroxybutyrate, liver triglycerides, and liver glycogen were observed in PPARbeta/delta-/- mice. Our data indicate that PPARbeta/delta governs glucose utilization and lipoprotein metabolism and has an important anti-inflammatory role in liver. Overall, our analysis reveals divergent roles of PPARalpha and PPARbeta/delta in regulation of gene expression in mouse liver.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nuclear factor I (NFI) family consists of sequence-specific DNA-binding proteins that activate both transcription and adenovirus DNA replication. We have characterized three new members of the NFI family that belong to the Xenopus laevis NFI-X subtype and differ in their C-termini. We show that these polypeptides can activate transcription in HeLa and Drosophila Schneider line 2 cells, using an activation domain that is subdivided into adjacent variable and subtype-specific domains each having independent activation properties in chimeric proteins. Together, these two domains constitute the full NFI-X transactivation potential. In addition, we find that the X. laevis NFI-X proteins are capable of activating adenovirus DNA replication through their conserved N-terminal DNA-binding domains. Surprisingly, their in vitro DNA-binding activities are specifically inhibited by a novel repressor domain contained within the C-terminal part, while the dimerization and replication functions per se are not affected. However, inhibition of DNA-binding activity in vitro is relieved within the cell, as transcriptional activation occurs irrespective of the presence of the repressor domain. Moreover, the region comprising the repressor domain participates in transactivation. Mechanisms that may allow the relief of DNA-binding inhibition in vivo and trigger transcriptional activation are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The international Functional Annotation Of the Mammalian Genomes 4 (FANTOM4) research collaboration set out to better understand the transcriptional network that regulates macrophage differentiation and to uncover novel components of the transcriptome employing a series of high-throughput experiments. The primary and unique technique is cap analysis of gene expression (CAGE), sequencing mRNA 5'-ends with a second-generation sequencer to quantify promoter activities even in the absence of gene annotation. Additional genome-wide experiments complement the setup including short RNA sequencing, microarray gene expression profiling on large-scale perturbation experiments and ChIP-chip for epigenetic marks and transcription factors. All the experiments are performed in a differentiation time course of the THP-1 human leukemic cell line. Furthermore, we performed a large-scale mammalian two-hybrid (M2H) assay between transcription factors and monitored their expression profile across human and mouse tissues with qRT-PCR to address combinatorial effects of regulation by transcription factors. These interdependent data have been analyzed individually and in combination with each other and are published in related but distinct papers. We provide all data together with systematic annotation in an integrated view as resource for the scientific community (http://fantom.gsc.riken.jp/4/). Additionally, we assembled a rich set of derived analysis results including published predicted and validated regulatory interactions. Here we introduce the resource and its update after the initial release.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NF1 is a family of polypeptides that binds to discrete DNA motifs and plays varying roles in the regulation of gene expression. These polypeptides are also thought to mediate the expression of differentiation-specific markers such as adipocyte and mammary cell type-specific genes. The expression of a number of cellular differentiation-specific markers is down-regulated during neoplastic transformation. We therefore investigated whether oncogenic transformation interferes with the action of NF1. Stable transfection of activated Ha-ras into a number of murine cells correlated with a down-regulation of the expression of the NF1 genes NF1/CTF and NF1/X. The down-regulation was not at the transcriptional level but at the level of stability of the NF1 mRNAs. The level of the DNA binding activity of the NF1 proteins was also reduced in Ha-v-ras-transformed cells, and the expression of a gene that depends on this family of transcription factors was specifically repressed. These results demonstrate that an activated Ha-ras-induced pathway destabilizes the half-life of mRNAs encoding specific members in the NF1 family of transcription factors, which leads to a decrease in NF1-dependent gene expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activated T helper (Th) cells have ability to differentiate into functionally distinct Th1, Th2 and Th17 subsets through a series of overlapping networks that include signaling and transcriptional control and the epigenetic mechanisms to direct immune responses. However, inappropriate execution in the differentiation process and abnormal function of these Th cells can lead to the development of several immune mediated diseases. Therefore, the thesis aimed at identifying genes and gene regulatory mechanisms responsible for Th17 differentiation and to study epigenetic changes associated with early stage of Th1/Th2 cell differentiation. Genome wide transcriptional profiling during early stages of human Th17 cell differentiation demonstrated differential regulation of several novel and currently known genes associated with Th17 differentiation. Selected candidate genes were further validated at protein level and their specificity for Th17 as compared to other T helper subsets was analyzed. Moreover, combination of RNA interference-mediated downregulation of gene expression, genome-wide transcriptome profiling and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq), combined with computational data integration lead to the identification of direct and indirect target genes of STAT3, which is a pivotal upstream transcription factor for Th17 cell polarization. Results indicated that STAT3 directly regulates the expression of several genes that are known to play a role in activation, differentiation, proliferation, and survival of Th17 cells. These results provide a basis for constructing a network regulating gene expression during early human Th17 differentiation. Th1 and Th2 lineage specific enhancers were identified from genome-wide maps of histone modifications generated from the cells differentiating towards Th1 and Th2 lineages at 72h. Further analysis of lineage-specific enhancers revealed known and novel transcription factors that potentially control lineage-specific gene expression. Finally, we found an overlap of a subset of enhancers with SNPs associated with autoimmune diseases through GWASs suggesting a potential role for enhancer elements in the disease development. In conclusion, the results obtained have extended our knowledge of Th differentiation and provided new mechanistic insights into dysregulation of Th cell differentiation in human immune mediated diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most breast cancer risk factors are associated with prolonged exposure of the mammary gland to high levels of estrogens. The actions of estrogens are predominantly mediated by two receptors, ERα and ERβ, which act as transcription factors binding with high affinity to estrogen response elements in the promoter region of target genes. However, most target genes do not contain the consensus estrogen response elements, but rather degenerated palindromic sequences showing one or more mutations and other ER-binding sites such as AP-1 and SP-1. Using the differential display reverse transcription-polymerase chain reaction technique, our group identified several genes differentially expressed in normal tissue and in ER-positive and ER-negative primary breast tumors. One of the genes shown to be down-regulated in breast tumors compared to normal breast tissue was the PHLDA1 (Pleckstrin homology-like domain, family A, member 1). In the present study, we investigated the potential of PHLDA1 to be regulated by estrogen via ER in MCF-7 breast cancer cells. The promoter region of PHLDA1 shows an imperfect palindrome, an AP-1- and three SP-1-binding sites potentially regulated by estrogens. We also assessed the effects of 17β-estradiol on PHLDA1 mRNA expression in MCF-7 breast cancer cells. MCF-7 cells exposed to 10 nM 17β-estradiol showed more than 2-fold increased expression of the PHLDA1 transcripts compared to control cells (P = 0.05). The anti-estrogen ICI 182,780 (1 µM) inhibited PHLDA1 mRNA expression and completely abolished the effect of 10 nM 17β-estradiol on PHLDA1 expression (P < 0.05), suggesting that PHLDA1 is regulated by estrogen via ER.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several stresses to tissues including hyperthermia, ischemia, mechanical trauma and heavy metals have been demonstrated to affect the regulation of a subset of the family of heat shock proteins of70kOa (hsp70). In several organisms following some of these traumas, the levels of hsp70 mRNA and proteins are dramatically upregulated. However, the effects of the stress on limb and tail amputation in the newt Notophthalmus viridescens, involving mechanical tissue damage, have not adequately been examined. In the present study, three techniques were utilized to quantitate the levels of hsp70 mRNA and protein in the tissues of the forelimbs and tails of newts during the early post-traumatic events following surgical resection of these:: appendages. These included quantitative Western blotting of proteins separated by both one and twodimensional SDS-polyacrylamide gel electrophoresis and quantitative Northern blot analysis of total RNA. In tissues of both the limb and tail one hour after amputation, there were no significant differences in the levels of hsp70 protein measured by one-dimensional SOSPAGE followed by Western blotting, when compared to the levels measured in the unamputated limb. A 30 minute heat shock at 35°C failed to elicit an increase in the levels of hsp70 protein in these tissues. Further analysis using the more sensitive 20 PAGE separation of stump tissue proteins revealed that at least some of the five hsp70 isoforms of the newt may be differentially regulated in limbs and tails in response to trauma. It appears also that amputation of the tail and limb tissues leads to slight 3 elevation in the levels of HSP70 mRNA when compared to those of their respective unstressed tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considering that melatonin has been implicated in body weight control, this work investigated whether this effect involves the regulation of adipogenesis. 3T3-L1 preadipocytes were induced to differentiate in the absence or presence of melatonin (10(-3) m). Swiss-3T3 cells ectopically and conditionally (Tet-off system) over-expressing the 34 kDa C/EBP beta isoform (Swiss-LAP cells) were employed as a tool to assess the mechanisms of action at the molecular level. Protein markers of the adipogenic phenotype were analyzed by Western blot. At 36 hr of differentiation of 3T3-L1 preadipocytes, a reduction of PPAR gamma expression was detected followed by a further reduction, at day 4, of perilipin, aP2 and adiponectin protein expression in melatonin-treated cells. Real-time PCR analysis also showed a decrease of PPAR gamma (60%), C/EBP alpha (75%), adiponectin (30%) and aP2 (40%) mRNA expression. Finally, we transfected Swiss LAP cells with a C/EBP alpha gene promoter/reporter construct in which luciferase expression is enhanced in response to C/EBP beta activity. Culture of such transfected cells in the absence of tetracycline led to a 2.5-fold activation of the C/EBP alpha promoter. However, when treated with melatonin, the level of C/EBP alpha promoter activation by C/EBP beta was reduced by 50% (P = 0.05, n = 6). In addition, this inhibitory effect of melatonin was also reflected in the phenotype of the cells, since their capacity to accumulate lipids droplets was reduced as confirmed by the poor staining with Oil Red O. In conclusion, melatonin at a concentration of 10(-3) m works as a negative regulator of adipogenesis acting in part by inhibiting the activity of a critical adipogenic transcription factor, C/EBP beta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have found that ectopic expression of cyclin A increases hormone-dependent and hormone-independent transcriptional activation by the estrogen receptor in vivo in a number of cell lines, including HeLa cells, U-2 OS osteosarcoma cells and Hs 578Bst breast epithelial cells. This effect can be further enhanced in HeLa cells by the concurrent expression of the cyclin-dependent kinase activator, cyclin H, and cdk7, and abolished by expression of the cdk inhibitor, p27KIP1, or by the expression of a dominant negative catalytically inactive cdk2 mutant. ER is phosphorylated between amino acids 82 and 121 in vitro by the cyclin A/cdk2 complex and incorporation of phosphate into ER is stimulated by ectopic expression of cyclin A in vivo. Together, these results strongly suggest a direct role for the cyclin A/cdk2 complex in phosphorylating ER and regulating its transcriptional activity.