864 resultados para Titanium mesh


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employ a quantum mechanical bond order potential in an atomistic simulation of channeled flow. We show that the original hypothesis that this is achieved by a cooperative deployment of slip and twinning is correct, first because a twin is able to “protect” a 60° ordinary dislocation from becoming sessile, and second because the two processes are found to be activated by Peierls stresses of similar magnitude. In addition we show an explicit demonstration of the lateral growth of a twin, again at a similar level of stress. Thus these simultaneous processes are shown to be capable of channeling deformation into the observed state of plane strain in so-called “A”-oriented mechanical testing of titanium aluminide superalloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyamide and polystyrene particles were coated with titanium dioxide films by atomic layer deposition (ALD) and then melt-compounded to form polymer nanocomposites. The rheological properties of the ALD-created nanocomposite materials were characterized with a melt flow indexer, a melt flow spiral mould, and a rotational rheometer. The results suggest that the melt flow properties of polyamide nanocomposites were markedly better than those of pure polyamide and polystyrene nanocomposites. Such behavior was shown to originate in an uncontrollable decrease in the polyamide molecular weight, likely affected by a high thin-film impurity content, as shown in gel permeation chromatography (GPC) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer. Transmission electron microscope image showed that a thin film grew on both studied polymer particles, and that subsequent melt-compounding was successful, producing well dispersed ribbon-like titanium dioxide with the titanium dioxide filler content ranging from 0.06 to 1.12wt%. Even though we used nanofillers with a high aspect ratio, they had only a minor effect on the tensile and flexural properties of the polystyrene nanocomposites. The mechanical behavior of polyamide nanocomposites was more complex because of the molecular weight degradation. Our approach here to form polymeric nanocomposites is one way to tailor ceramic nanofillers and form homogenous polymer nanocomposites with minimal work-related risks in handling powder form nanofillers. However, further research is needed to gauge the commercial potential of ALD-created nanocomposite materials. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation localisation is the main reason for material failure in cold forging of titanium alloys and is thus closely related to the production yield of cold forging. In the study of the influence of process parameters on dynamic compression, considering material constitutive behaviour, physical parameters and process parameters, a numerical dynamic compression model for titanium alloys has been constructed. By adjusting the process parameters, the severity of strain localisation and stress state in the localised zone can be controlled thus enhancing the compression performance of titanium alloys.